
Pro iPhone
Development
with Swift 5

Design and Manage Top Quality Apps
—
Second Edition
—
Wallace Wang

Pro iPhone Development
with Swift 5

Design and Manage Top Quality Apps

Second Edition

Wallace Wang

Pro iPhone Development with Swift 5: Design and Manage Top Quality Apps

ISBN-13 (pbk): 978-1-4842-4943-7			 ISBN-13 (electronic): 978-1-4842-4944-4
https://doi.org/10.1007/978-1-4842-4944-4

Copyright © 2019 by Wallace Wang

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4943-7. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Wallace Wang
San Diego, CA, USA

https://doi.org/10.1007/978-1-4842-4944-4

The secret to success is persistence. Never give up,
never doubt yourself. The path to any goal will never be easy,
but that’s exactly what makes striving for goals so rewarding.

Talent, intelligence, and skill are never as important
as persistence. Remember, never be afraid of failure. Be afraid of

giving up too soon and never realizing your true potential in
whatever dream you want to achieve. You may not always

reach your dreams, but pursuing big dreams will always give
you a far richer life than if you never bothered trying at all.

v

About the Author�� xi

About the Technical Reviewer�� xiii

Table of Contents

Chapter 1: Organizing Code��� 1

Using the // MARK: Comment��� 3

Using Extensions�� 5

Using Files and Folders�� 11

Use Code Snippets��� 14

Creating Custom Code Snippets��� 17

Deleting Custom Code Snippets��� 18

Using @IBDesignable and @IBInspectable�� 19

Summary��� 26

Chapter 2: Debugging Code��� 27

Simple Debugging Techniques��� 30

Using the Xcode Debugger��� 34

Using Breakpoints�� 35

Stepping Through Code�� 36

Managing Breakpoints��� 41

Using Symbolic Breakpoints��� 45

Using Conditional Breakpoints��� 48

Summary��� 49

vi

Chapter 3: Understanding Closures��� 51

Closures with Multiple Parameters�� 54

Understanding Value Capturing�� 56

Using Closures Like Data��� 57

Summary��� 59

Chapter 4: Multithreaded Programming Using Grand Central Dispatch������������������ 61

Understanding Threads�� 62

Using Grand Central Dispatch�� 68

Displaying Feedback�� 77

Using Dispatch Groups��� 80

Summary��� 87

Chapter 5: Understanding the Application Life Cycle�� 89

Getting State-Change Notifications�� 90

Using Execution State Changes��� 98

Active ➤ Inactive��� 98

Inactive ➤ Background�� 98

Background ➤ Inactive�� 99

Inactive ➤ Active��� 99

Displaying the Launch Screen��� 99

Using the Notification Center��� 101

Summary��� 111

Chapter 6: Understanding Data Persistence�� 113

Storing Preferences in UserDefaults�� 114

Storing Preferences in UserDefaults in the AppDelegate File�� 120

Reading and Writing to Files�� 131

Using Core Data��� 136

Creating a Data Model File��� 137

Customizing a Data Model File��� 141

Table of Contents

vii

Designing the User Interface�� 145

Writing Swift Code�� 148

Summary��� 152

Chapter 7: Passing Data Between Files��� 155

Sharing Data with the AppDelegate.swift File�� 155

Sharing Data Between View Controllers�� 161

Passing Data Forward�� 163

Passing Data Backward with a Protocol��� 179

Passing Data Backward with a Delegate�� 187

Passing Data with the Notification Center��� 192

Summary��� 198

Chapter 8: Translating with Localization��� 201

Designing the User Interface��� 202

Creating a Localization File�� 205

Storing Text�� 209

Creating a Localized String File��� 213

Localizing Images�� 222

Customizing the App Name�� 226

Formatting Numbers and Dates��� 228

Summary��� 232

Chapter 9: Using 3D Touch��� 235

Understanding 3D Touch�� 236

Detecting 3D Touch Availability�� 239

Detecting Pressure��� 242

Creating Home Screen Quick Actions�� 245

Responding to Quick Action Items��� 252

Adding Dynamic Home Screen Quick Actions�� 259

Adding Peeking, Popping, and Previewing��� 266

Summary��� 276

Table of Contents

viii

Chapter 10: Detecting Motion and Orientation�� 277

Detecting Shake Gestures�� 277

Understanding Core Motion��� 281

Detecting Acceleration��� 282

Detecting Rotation with the Gyroscope�� 285

Detecting Magnetic Fields�� 289

Detecting Device Motion Data�� 290

Summary��� 292

Chapter 11: Using Location and Maps��� 293

Using Core Location��� 293

Defining Accuracy��� 294

Defining a Distance Filter��� 295

Requesting a Location�� 296

Retrieving Location Data�� 296

Requesting Authorization��� 297

Adding a Map��� 298

Zooming in a Location�� 303

Adding Annotations�� 307

Summary��� 311

Chapter 12: Playing Audio and Video�� 313

Playing an Audio File�� 314

Playing Video�� 323

Playing Videos on the Internet��� 327

Summary��� 332

Chapter 13: Using the Camera��� 333

Setting Privacy Settings��� 333

Checking for a Camera�� 335

Designing a Simple User Interface��� 337

Taking a Picture��� 339

Table of Contents

ix

Saving a Picture��� 340

Summary��� 344

Chapter 14: Using WebKit�� 345

Displaying Web Pages from the Internet�� 345

Displaying HTML Files�� 351

Summary��� 356

Chapter 15: Displaying Animation��� 357

Moving Items with Animation��� 358

Customizing Animation with Delays and Options��� 363

Customizing Animation with Damping and Velocity��� 367

Resizing Items with Animation��� 369

Rotating Items with Animation��� 372

Changing Transparency with Animation��� 376

Animating Transitions Between View Controllers��� 379

Simple Animation Transition Between View Controllers��� 393

Summary��� 398

Chapter 16: Using Machine Learning��� 399

Understanding Machine Learning�� 400

Finding a Core ML Model��� 402

Image Recognition��� 403

Identifying Objects from the Camera��� 415

Analyzing an Image�� 424

Summary��� 432

Chapter 17: Using Facial and Text Recognition��� 433

Recognizing Faces in Pictures��� 433

Highlighting Faces in an Image�� 442

Highlighting Parts of a Face in an Image��� 450

Recognizing Text in an Image�� 458

Summary��� 469

Table of Contents

x

Chapter 18: Using Speech�� 471

Converting Speech to Text��� 471

Recognizing Spoken Commands��� 482

Turning Text to Speech��� 486

Summary��� 490

Chapter 19: Understanding SiriKit��� 491

How SiriKit Works�� 492

Defining How Siri Interacts with the User�� 497

Understanding the IntentHandler.swift File�� 500

Understanding the ExtensionUI Folder��� 504

Creating a Payment App with Siri�� 510

Summary��� 518

Chapter 20: Understanding ARKit�� 519

How ARKit Works�� 519

Drawing Augmented Reality Objects�� 528

Resetting the World Origin��� 531

Drawing Custom Shapes�� 537

Modifying the Appearance of Shapes�� 539

Playing with Lighting��� 548

Summary��� 553

Chapter 21: Interacting with Augmented Reality�� 555

Storing and Accessing Graphic Assets��� 556

Working with Touch Gestures��� 559

Detecting a Horizontal Plane�� 565

Modifying an Image��� 571

Creating Virtual Objects��� 572

Summary��� 584

Index�� 585

Table of Contents

xi

About the Author

Wallace Wang has written dozens of computer books over the years beginning with

ancient MS-DOS programs like WordPerfect and Turbo Pascal, migrating to writing

books on Windows programs like Visual Basic and Microsoft Office, and finally switching

to Swift programming for Apple products like the Macintosh and the iPhone. He

currently teaches iOS programming through UCSD Extension in San Diego.

When he’s not helping people discover the fascinating world of programming, he

performs stand-up comedy and appears on two radio shows on KNSJ in San Diego

(http://knsj.org) called Notes from the Underground (with Dane Henderson, Jody

Taylor, and Kristen Yoder) and Laugh In Your Face Radio (with Chris Clobber and Sarah

Burford).

He also writes a screenwriting/storytelling blog called The 15 Minute Movie Method

(http://15minutemoviemethod.com) designed for screenwriters and novelists. For fun,

he also writes a blog about the latest cat news on the Internet called Cat Daily News

(http://catdailynews.com).

http://www.knsj.org
http://www.15minutemoviemethod.com
http://www.catdailynews.com

xiii

About the Technical Reviewer

Massimo has more than 22 years of experience in Security, Web and Mobile

Development, Cloud, and IT Architecture. His true IT passions are Security and Android.

He has been programming and teaching how to program with Android, Perl, PHP,

Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science in Computing Science from the University of Salerno,

Italy.

He has worked as a Project Manager, Software Engineer, Research Engineer, Chief

Security Architect, Information Security Manager, PCI/SCADA Auditor, and Senior Lead

IT Security/Cloud/SCADA Architect for many years.

His technical skills include Security, Android, Cloud, Java, MySQL, Drupal, Cobol,

Perl, Web and Mobile Development, MongoDB, D3, Joomla, Couchbase, C/C++, WebGL,

Python, Pro Rails, Django CMS, Jekyll, Scratch, etc.

He currently works as Chief Information Security Officer (CISO) for Cargotec Oyj.

1
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_1

CHAPTER 1

Organizing Code
Programs are rewritten and modified far more often than they are ever created. That

means most of the time developers will be changing and altering existing code either

written by someone else or written by you sometime in the past. Since you may be

writing code that you or someone else will eventually modify in the future, you need to

make sure you organize your code to make it easy to understand.

While every developer has their own programming style and no two programmers

will write the exact same code, programming involves writing code that works and

writing code that’s easy to understand.

Writing code that works is hard. Unfortunately once developers get their code to

work, they rarely clean it up and optimize it. The end result is a confusing mix of code

that works but isn’t easy to understand. To modify that code, someone has to decipher

how it works and then rewrite that code to make it cleaner to read while still working

as well as the original code. Since this takes time and doesn’t add any new features, it’s

often ignored.

Since few developers want to take time to clean up their code after they get it to work,

it’s best to get in the habit of writing clear, understandable code right from the start. That

involves several tasks:

•	 Writing code in a consistent and understandable style

•	 Making the logic of your code clear so anyone reading it later can

easily understand how it works

•	 Organizing code to make it easy to modify later

Writing code in a consistent and understandable style means predictability. For

example, some programmers give all IBOutlet variables a prefix of “IB” to stand for

IBOutlet such as

@IBOutlet var IBnameLabel: UILabel!

2

This type of programming style makes it easy to tell the difference between using an

IBOutlet variable and an ordinary variable. Other programmers add a prefix or suffix to

variable names to identify the type of data they contain such as

 var nameStr : String

 var ageInt : Int

 var salaryDbl : Double

The ultimate goal is to write self-documenting code that makes it easy for anyone

to understand at first glance. One huge trap that programmers often make is assuming

they’ll be able to understand their own code months or even years later. Yet even after

a few weeks, your own code can seem confusing because you’re no longer familiar with

your assumptions and logic that you had when you wrote the code originally.

If you can’t even understand your own code months or even weeks later, imagine

how difficult other programmers will find your code when they have to modify it in your

absence. Good code doesn’t just work, but it’s easy for other programmers to understand

how it works and what it does as well.

When developing your own programming style, strive for consistency and

organization. Consistency means you use the same convention for writing code whether

it’s naming variables with prefixes or suffixes that identify the data type or indenting

code the same way to highlight specific steps.

Organization means using spacing and storing related code together such as putting

IBOutlets and variables near the top and placing IBAction methods at the bottom with

ordinary functions in the middle. This can group chunks of code in specific places to

make looking for specific code easier as shown in Figure 1-1.

Chapter 1 Organizing Code

3

The exact grouping of different parts of code is arbitrary, but what’s important is that

you organize code so it’s easy to find what you want.

�Using the // MARK: Comment
Besides physically grouping related items together such as IBOutlets and variables,

you can also make searching for groups of related code easier by using the // MARK:

comment. By placing a //MARK: comment, followed by descriptive text, you can make

it easy to jump from one section of code to another through Xcode’s pull-down menu as

shown in Figure 1-2.

Figure 1-1.  Grouping related code together makes it easy to know where to look
for certain information

Chapter 1 Organizing Code

4

The structure of the // MARK: comment looks like this:

// MARK: Descriptive text

The two // symbols define a comment. The MARK: text tells Xcode to create a pull-

down menu category. The descriptive text can be any arbitrary text you want to identify

the code that appears underneath.

Once you’ve defined one or more // MARK: comments, you can quickly jump to any

of them by clicking the last item displayed above Xcode’s middle pane to open a pull-

down menu as shown in Figure 1-3.

Figure 1-2.  The // MARK: comment creates categories in Xcode’s pull-down menus

Chapter 1 Organizing Code

5

Use the // MARK: comment generously throughout each .swift file. This will make it

easy to jump to different parts of your code to modify it or simply study it later.

�Using Extensions
When creating different classes, it’s likely you’ll need to extend them. For

example, a class file that uses table views often needs to extend its class with

UITableViewDataSource and UITableViewDelegate such as

class ViewController: UIViewController, UITableViewDelegate,

UITableViewDataSource {

Once you extend a class, you need to implement its required functions. For example,

extending a class with UITableViewDataSource requires that you include the following

two functions:

 �func tableView(_ tableView: UITableView, numberOfRowsInSection section:

Int) -> Int {

 // Code here

 }

Figure 1-3.  Displaying Xcode’s pull-down menu that lists all // MARK: comments

Chapter 1 Organizing Code

6

 �func tableView(_ tableView: UITableView, cellForRowAt indexPath:

IndexPath) -> UITableViewCell {

 // Code here

 }

You can place these two functions anywhere in your .swift file, but it’s generally a

good idea to keep these two functions together. If you extend a ViewController class with

UITableViewDelegate and UITableViewDataSource, the entire ViewController.swift file

might look like this:

import UIKit

class ViewController: UIViewController, UITableViewDelegate,

UITableViewDataSource {

 @IBOutlet var petTable: UITableView!

 �let petArray = ["cat", "dog", "parakeet", "parrot", "canary", "finch",

"tropical fish", "goldfish", "sea horses", "hamster", "gerbil",

"rabbit", "turtle", "snake", "lizard", "hermit crab"]

 let cellID = "cellID"

 override func viewDidLoad() {

 super.viewDidLoad()

 petTable.dataSource = self

 petTable.delegate = self

 �// Do any additional setup after loading the view, typically from a nib.

 }

 �func tableView(_ tableView: UITableView, numberOfRowsInSection section:

Int) -> Int {

 return petArray.count

 }

 �func tableView(_ tableView: UITableView, cellForRowAt indexPath:

IndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCell(withIdentifier: cellID)

 if (cell == nil) {

 cell = UITableViewCell(

Chapter 1 Organizing Code

7

 style: UITableViewCell.CellStyle.default,

 reuseIdentifier: cellID)

 }

 cell?.textLabel?.text = petArray[indexPath.row]

 return cell!

 }

 �func tableView(_ tableView: UITableView, didSelectRowAt indexPath:

IndexPath) {

 let selectedItem = petArray[indexPath.row]

 �let alert = UIAlertController(title: "Your Choice", message: "\

(selectedItem)", preferredStyle: .alert)

 �let okAction = UIAlertAction(title: "OK", style: .default, handler:

{ action -> Void in

 //Just dismiss the action sheet

 })

 alert.addAction(okAction)

 self.present(alert, animated: true, completion: nil)

 }

}

While it’s easy to identify the three tableView functions (numberOfRowsInSection,

cellForRowAt, and didSelectRowAt), it’s not easy to see which functions belong to

the UITableViewDelegate and which belong to UITableViewDataSource. Even more

troublesome is that it’s possible to insert multiple functions in between all three

tableView functions.

To make it much easier to see which required functions are required by which class,

you can extend a class a second way by adding specific extension code at the end of a

class file as follows:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var petTable: UITableView!

Chapter 1 Organizing Code

8

 �let petArray = ["cat", "dog", "parakeet", "parrot", "canary", "finch",

"tropical fish", "goldfish", "sea horses", "hamster", "gerbil",

"rabbit", "turtle", "snake", "lizard", "hermit crab"]

 let cellID = "cellID"

 override func viewDidLoad() {

 super.viewDidLoad()

 petTable.dataSource = self

 petTable.delegate = self

 // Do any additional setup after loading the view.

 }

}

extension ViewController: UITableViewDataSource {

 �func tableView(_ tableView: UITableView, numberOfRowsInSection section:

Int) -> Int {

 return petArray.count

 }

 �func tableView(_ tableView: UITableView, cellForRowAt indexPath:

IndexPath) -> UITableViewCell {

 var cell = tableView.dequeueReusableCell(withIdentifier: cellID)

 if (cell == nil) {

 cell = UITableViewCell(

 style: UITableViewCell.CellStyle.default,

 reuseIdentifier: cellID)

 }

 cell?.textLabel?.text = petArray[indexPath.row]

 return cell!

 }

}

extension ViewController: UITableViewDelegate {

 �func tableView(_ tableView: UITableView, didSelectRowAt indexPath:

IndexPath) {

 let selectedItem = petArray[indexPath.row]

Chapter 1 Organizing Code

9

 �let alert = UIAlertController(title: "Your Choice", message:

"\(selectedItem)", preferredStyle: .alert)

 �let okAction = UIAlertAction(title: "OK", style: .default, handler:

{ action -> Void in

 //Just dismiss the action sheet

 })

 alert.addAction(okAction)

 self.present(alert, animated: true, completion: nil)

 }

}

Notice that this method separates the tableView functions from the rest of the

ViewController.swift code and explicitly shows that the numberOfRowsInSection and

cellForRowAt tableView functions belong to the UITableViewDataSource while the

didSelectRowAt tableView function belongs to the UITableViewDelegate.

By using the extension keyword at the end of .swift class files, it’s much easier to

group and organize related code. With the extension keyword, Xcode automatically

identifies extensions in its pull-down menus to make it easier to find as shown in

Figure 1-4.

Chapter 1 Organizing Code

10

The preceding two methods of extending a class are equivalent so it’s just a matter

of using which method you like best. Just be aware that using the extension keyword to

separate code can help you organize code without any extra work on your part.

Figure 1-4.  Displaying extensions in Xcode’s pull-down menu

Chapter 1 Organizing Code

11

�Using Files and Folders
Theoretically, you could create a single ViewController.swift file and cram it full of code.

While this would work, it’s likely to be troublesome to read and modify. A far better

solution is to divide your project into multiple files and store those multiple files in

separate folders in Xcode’s Navigator pane.

Separate files and folders exist solely for your benefit to organize your project.

Xcode ignores all folders and treats separate files as if they were all stored in a single file.

When creating separate files, the two most common types of files to create are shown in

Figure 1-5:

•	 Cocoa Touch Class

•	 Swift File

Figure 1-5.  The two most common types of .swift files in a project

Chapter 1 Organizing Code

12

Cocoa Touch Class files are mostly used to connect to view controllers displayed in a

storyboard. When you need a .swift file to control part of your app’s user interface, use a

Cocoa Touch Class file.

The Swift File option creates blank .swift files which are most often used to store and

isolate code that you don’t want to cram in an existing .swift file such as defining a list of

variables, data structures, or classes.

The more .swift files you add to a project, the harder it can be to find any particular

file. To help organize all the files that make up a project, Xcode lets you create folders.

By using folders, you can selectively hide or display the contents of a folder as shown in

Figure 1-6.

Figure 1-6.  Folders help organize all the files in a project

To create an empty folder, choose File ➤ New ➤ Group. Once you’ve created an

empty folder, you can drag and drop other folders or files into that empty folder.

Another option is to select one or more files and/or folders by holding down the

Command key and clicking a different file and/or folder. Then choose File ➤ New ➤

Group from Selection. This creates a new folder and automatically stores your selected

items into that new folder.

You can also right-click the Navigator pane to display a popup menu with the New

Group or New Group from Selection commands as shown in Figure 1-7.

Chapter 1 Organizing Code

13

Note I f the Group or Group from Selection commands are grayed out, click a
.swift file to select it before choosing the File ➤ New ➤ Group or File ➤ New ➤
Group from Selection command.

Once you’ve created a folder, you can always delete that folder afterward. To delete a

folder, follow these steps:

	 1.	 Click the folder you want to delete in the Navigator pane.

	 2.	 Choose Edit ➤ Delete, or right-click the folder, and when a

popup menu appears, choose Delete. If the folder is not empty,

Xcode displays a dialog to ask if you want to remove references to

any stored files in that folder or just delete them all as shown in

Figure 1-8.

Figure 1-7.  Menu commands to create a new folder

Chapter 1 Organizing Code

14

Note D eleting a folder also deletes its contents, which can include other folders
and files.

	 3.	 Click the Move to Trash button to delete the files completely (or

click Remove Reference to keep the file and disconnect the file

from your project but without deleting it).

�Use Code Snippets
Remembering the exact syntax to create switch statements or for loops in Swift can be

troublesome. As a shortcut, Xcode offers code snippets, which let you insert generic code

in your .swift files that you can customize afterward. This lets you focus on the purpose

of your code without worrying about the specifics of how Swift implements a particular

way of writing branching or looping statements. In addition, code snippets help you

write consistent code that’s formatted the same way.

To use code snippets, follow these steps:

	 1.	 Click the .swift file where you want to type code.

	 2.	 Click the Library icon. The Snippets window appears as shown in

Figure 1-9.

Figure 1-8.  Xcode alerts you if you’re deleting a folder that contains files

Chapter 1 Organizing Code

15

Figure 1-9.  The Code Snippets window

Chapter 1 Organizing Code

16

	 3.	 Scroll through the Code Snippets window and click a snippet

you want to use. Xcode displays a brief description of that code

snippet as shown in Figure 1-10.

Figure 1-11.  A code snippet ready for customization

Figure 1-10.  The Code Snippets window

	 4.	 Drag a snippet from the Code Snippet window and drop it in

your .swift file. Xcode displays your snippet with placeholders for

customizing the code with your own data as shown in Figure 1-11.

Chapter 1 Organizing Code

17

�Creating Custom Code Snippets
The Code Snippet window can make it easy to use common types of Swift statements

without typing them yourself. However, you might create your own code that you might

want to save and reuse between multiple projects. Rather than copy and paste from one

project to another, you can store your own code in the Code Snippet window.

To store your own code as a snippet, follow these steps:

	 1.	 Select the code you want to store.

	 2.	 Choose Editor ➤ Create Code Snippet, or right-click your selected

code, and when a popup menu appears, choose Create Code

Snippet as shown in Figure 1-12. Xcode adds your selected code to

the Code Snippet window as shown in Figure 1-13.

Figure 1-12.  The Create Code Snippet command for adding your own code to the
Code Snippet library

Chapter 1 Organizing Code

18

	 3.	 Click in the Title text field and type a descriptive name for your

code snippet. You may also want to edit your code or modify other

options. From now on, you’ll be able to use your custom code

snippet in any Xcode project.

�Deleting Custom Code Snippets
After adding one or more code snippets, you may want to delete them. You can only

delete any code snippets you added to Xcode; you can never delete any of Xcode’s

default code snippets. To delete a user-defined code snippet from the Code Snippet

window, follow these steps:

	 1.	 Click a .swift file in the Navigator pane.

	 2.	 Click the Library icon to open the Code Snippet library.

	 3.	 Click the code snippet you want to delete.

Figure 1-13.  Adding custom code to the Code Snippet window

Chapter 1 Organizing Code

19

	 4.	 Press Shift+Delete. Xcode asks if you really want to delete the code

snippet as shown in Figure 1-14.

Figure 1-14.  Verifying the deletion of a code snippet

	 5.	 Click Delete. Xcode removes your code snippet from the Code

Snippet window.

�Using @IBDesignable and @IBInspectable
When you design a user interface, you place various objects on a view such as buttons,

sliders, labels, and text fields. To customize these objects, you have two choices:

•	 Write Swift code to modify objects programmatically.

•	 Change an object’s properties in the Attributes Inspector.

As a general rule, it’s always best to try to write as little code as possible because the

less code you have, the easier it will be to examine and debug that code. Unfortunately,

the Attributes Inspector doesn’t list all possible ways to customize an object. That means

you have to resort to writing Swift code to customize an object.

Suppose you wanted to create a button, define a border width and border color, and

also a corner radius so the corners of the button appear rounded. You could create an

IBOutlet variable and then modify that IBOutlet variable like this:

 @IBOutlet var oldButton: UIButton!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 oldButton.layer.cornerRadius = 20

 oldButton.layer.borderWidth = 3

 oldButton.layer.borderColor = UIColor.red.cgColor

 }

Chapter 1 Organizing Code

20

The preceding code programmatically changes the appearance of a button at

runtime. However, if you don’t like the appearance of the border width, color, or corner

radius, you have to go back and modify the code all over again.

A far better solution would be to modify these properties in the Attributes Inspector

and see your changes affect the appearance of a button at the same time. To do this, we

need to use @IBInspectable and @IBDesignable.

@IBInspectable defines properties we want to appear in the Attributes Inspector.

@IBDesignable tells Xcode to make any changes visible in Xcode. We need to create a

Cocoa Touch Class file based on the object we want to customize. Then we need to make

that class file @IBDesignable and create variables that are @IBInspectable.

To see how @IBDesignable and @IBInspectable work, follow these steps:

	 1.	 Create an iOS Single View App project and name it

InspectableApp.

	 2.	 Click the Main.storyboard in the Navigator pane.

	 3.	 Click the Library icon and drag and drop two buttons onto the

view where one button appears above the other.

	 4.	 Resize both buttons so they’re larger and wider.

	 5.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to both buttons.

	 6.	 Double-click the top button, type Custom Button, and press

Enter.

	 7.	 Double-click the bottom button, type Old Button, and press Enter.

	 8.	 Choose View ➤ Inspectors ➤ Assistant Editor ➤ Show Assistant

Editor, or click the Assistant Editor icon in the upper right

corner of the Xcode window. The Main.storyboard file and

ViewController.swift file appear side by side.

	 9.	 Move the mouse pointer over the Old Button, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 10.	 Release the Control key and the left mouse button. A popup

window appears.

Chapter 1 Organizing Code

21

	 11.	 Click in the Name text field, type oldButton, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var oldButton: UIButton!

	 12.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 oldButton.layer.cornerRadius = 20

 oldButton.layer.borderWidth = 3

 oldButton.layer.borderColor = UIColor.red.cgColor

}

	 13.	 Click the Main.storyboard file in the Navigator pane.

	 14.	 Choose File ➤ New ➤ File. A template dialog appears.

	 15.	 Click Cocoa Touch Class under the iOS category and click the

Next button. Another dialog appears, asking for a class name and

subclass.

	 16.	 Click in the Class text field and type RoundedButton.

	 17.	 Click the Subclass of popup menu and choose UIButton as shown

in Figure 1-15. (Note that if you wanted to customize a different

user interface object such as a label, you would choose UILabel in

the Subclass of popup menu.)

Chapter 1 Organizing Code

22

	 18.	 Click the Next button and then click the Create button. Xcode

displays the RoundedButton.swift file in the Navigator pane.

	 19.	 Click the Custom Button on the Main.storyboard to select it; then

choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 20.	 Click the Class popup menu and choose RoundedButton. This

links the RoundedButton.swift file to the button labelled Custom

Button.

	 21.	 Click the RoundedButton.swift file in the Navigator pane.

	 22.	 Add the following code so the entire RoundedButton.swift looks

like this:

import UIKit

@IBDesignable class RoundedButton: UIButton {

 @IBInspectable var cornerRadius : CGFloat = 0 {

Figure 1-15.  Creating a new Cocoa Touch Class file for a UIButton

Chapter 1 Organizing Code

23

 didSet {

 layer.cornerRadius = cornerRadius

 }

 }

 @IBInspectable var borderWidth : CGFloat = 1.0 {

 didSet {

 layer.borderWidth = borderWidth

 }

 }

 @IBInspectable var borderColor : UIColor = .white {

 didSet {

 layer.borderColor = borderColor.cgColor

 }

 }

}

The @IBDesignable keyword makes any object linked to this class

file display its changes in Xcode when the user modifies the class

file’s defined properties.

The @Inspectable keyword makes all properties appear in the

Attributes Inspector pane. Notice that each property uses the

didSet keyword to immediately make any changes to these

properties appear in the object displayed in Xcode.

	 23.	 Click the Main.storyboard file in the Navigator pane.

	 24.	 Click the Old Button and choose View ➤ Inspectors ➤ Show

Attributes Inspector, or click the Attributes Inspector icon in the

upper right corner of the Xcode window. Notice that the first

options at the top of the Attributes Inspector display a Type, State

Config, and Title popup menu as shown in Figure 1-16.

Chapter 1 Organizing Code

24

	 25.	 Click the Custom Button. Notice that since this top button is

connected to the RoundedButton.swift file that has defined three

@Inspectable properties, those three properties now appear at the

top of the Attributes Inspector as shown in Figure 1-17.

Figure 1-16.  An ordinary Attributes Inspector for a button

Chapter 1 Organizing Code

25

	 26.	 Click in the Corner Radius text field and type a value such as 36.

Notice that the higher the value, the more rounded the corners of

the button.

	 27.	 Click in the Border Width text field and type a value such as 3. The

higher the value, the thicker the border.

	 28.	 Click the Border Color popup menu and choose a color such as

orange or red. Xcode displays the border in your chosen color.

By using the @IBInspectable, @IBDesignable, and didSet keywords, you can

customize different user interface objects, make those custom properties appear in the

Attributes Inspector, and see the changes in Xcode.

Figure 1-17.  A custom Attributes Inspector for a button

Chapter 1 Organizing Code

26

�Summary
Writing iOS apps involves writing new code and modifying existing code. To do both

tasks, you need to understand how any existing code works so you don’t accidentally

duplicate or break it. In many cases, you’ll have to edit other people’s code, which may or

may not have been written in a clear, understandable manner.

Although you can’t control how other programmers write code, you can control how

you write code. The general principle is to write code that’s easy to understand. This can

involve adding comments (especially // MARK: comments to make it easy to jump to

specific parts of your code). You should also use descriptive variable names and organize

the related code in logical groups. You can do that by storing different parts of your code

together. You can also organize code by storing code in separate files that you can group

in folders.

To ensure you write common Swift statements in a consistent manner, you can use

code snippets to insert the basic Swift code for you. Then you just have to customize

it with your own data. For more flexibility, store your own code in the Code Snippet

window. That way you can reuse your own code between multiple projects in Xcode.

If you want to customize a user interface object, create a separate Cocoa Touch Class

file, use @IBInspectable to display properties in the Attributes Inspector pane, use didSet

to make Xcode apply changes immediately, and use @IBDesignable to visually display

those changes.

Organizing code is never necessary, but since most programs are modified multiple

times, proper organization ahead of time can make modifying code much easier. Always

assume that someone else will modify your code and make it easy on that person for the

future, especially because that person could be you.

Chapter 1 Organizing Code

27
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_2

CHAPTER 2

Debugging Code
In the professional world of software, you’ll actually spend more time modifying existing

programs than you ever will creating new ones. When writing new programs or editing

existing ones, it doesn’t matter how much experience or education you might have

because even the best programmers can make mistakes. In fact, you can expect that you

will make mistakes no matter how careful you may be. Once you accept this inevitable

fact of programming, you need to learn how to find and fix your mistakes.

In the world of computers, mistakes are commonly called “bugs,” which gets

its name from an early computer that used physical switches to work. One day the

computer failed, and when technicians opened the computer, they found that a moth

had been crushed within a switch, preventing the switch from closing. From that point

on, programming errors have been called bugs and fixing computer problems has been

known as debugging.

Three common types of computer bugs are

•	 Syntax errors – Occurs when you misspell something such as a

keyword, variable name, function name, or class name or use a

symbol incorrectly

•	 Logic errors – Occurs when you use commands correctly, but the

logic of your code doesn’t do what you intended

•	 Runtime errors – Occurs when a program encounters unexpected

situations such as the user entering invalid data or when another

program somehow interferes with your program unexpectantly

Syntax errors are the easiest to find and fix because they’re merely misspellings

of variable names that you created or misspelling of Swift commands that Xcode can

help you identify. If you type a Swift keyword such as “var” or “let”, Xcode displays that

keyword in pink (or whatever color you specify for displaying keywords in the Xcode

editor).

28

Now if you type a Swift keyword and it doesn’t appear in its usual identifying color,

then you know you probably typed it wrong somehow. By coloring your code, Xcode’s

editor helps you visually identify common misspellings or typos.

Besides using color, the Xcode editor provides a second way to help you avoid

mistakes when you need to type the name of a method or class. As soon as Xcode

recognizes that you might be typing a known item, it displays a popup menu of possible

options. Now instead of typing the entire command yourself, you can simply select a

choice in the popup menu and press the Tab or Enter key to let Xcode type your chosen

command correctly as shown in Figure 2-1.

Figure 2-1.  Xcode displays a menu of possible commands you might want to use

Syntax errors often keep your program from running at all. When a syntax error

keeps your program from running, Xcode can usually identify the line (or the nearby

area) of your program where the misspelled command appears so you can fix it as shown

in Figure 2-2.

Figure 2-2.  Syntax errors often keep a program from running, which allows Xcode
to identify the syntax error

If you click the red dot that appears on the left of the error message, Xcode can often

display possible suggestions for fixing your error. Then you can let Xcode fix the error for

you by clicking the Fix button that appears to the right of the solution you want to use as

shown in Figure 2-3.

Chapter 2 Debugging Code

29

Logic errors are much harder to find and detect than syntax errors. Logic errors

occur when you use Swift code correctly, but it doesn’t do what you want it to do. Since

your code is actually valid, Xcode has no way of knowing that it’s not working the way

you intended. As a result, logic errors can be difficult to debug because you think you

wrote your code correctly but you (obviously) did not.

How do you find a mistake in code that you thought you wrote correctly? Finding

your mistake can often involve starting from the beginning of your program and

exhaustively searching each line all the way until the end. (Of course there are faster

ways than searching your entire program, line by line, which you’ll learn about later in

this chapter.)

Finally, the hardest errors to find and debug are runtime errors. Syntax errors usually

keep your program from running, so if your program actually runs, you can assume that

you have eliminated most, if not all, syntax errors in your code.

Logic errors can be tougher to find, but they’re predictable. For example, if your

program asks the user for a password but fails to give the user access even though the

user types a correct password, you know you have a logic error. Each time you run your

program, you can reliably predict when the logic error will occur.

Runtime errors are more insidious because they don’t always occur predictably. For

example, your app may run perfectly well on an iPhone, but the moment you run the

same app on an iPad (or vice versa), the app fails. That’s because conditions between

two different iOS devices will never be exactly the same.

The problem is that unexpected, outside circumstances can affect an app’s behavior

such as another app taking up too much memory or one device might be running a

different version of iOS than another device. Because runtime errors can’t always be

duplicated, they can be frustrating to find and even harder to fix since you can’t always

examine every possible condition your app might face when running on different iOS

devices. Some apps can work perfectly – except if the user accidentally presses two keys

at the same time. Other apps work just fine – until the user happens to save a file at the

exact moment that another app tries to receive data over a WiFi connection.

Figure 2-3.  Xcode can often suggest ways to fix errors

Chapter 2 Debugging Code

30

Usually you can eliminate most syntax errors and find and fix most logic errors.

However, it may not be possible to find and completely eliminate all runtime errors in a

program. The best way to avoid spending time hunting for bugs is to strive to write code

and test it carefully to make sure it’s as error-free as possible.

�Simple Debugging Techniques
When your app isn’t working, you often have no idea what could be wrong. While you

could tediously examine your code from beginning to end, it’s often faster to simply

guess where the mistake might be.

Once you have a rough idea what part of your app might be causing the problem,

you have two choices. First, you can delete the suspicious code and run your app

again. If the problem magically goes away, then you’ll know that the code you deleted

was likely the culprit.

However if your app still doesn’t work, you have to retype your deleted code back

into your program. A simpler solution might be to cut and paste code out of Xcode and

store it in a text editor such as the TextEdit program that comes with every Macintosh,

but this can be tedious.

That’s why a second solution is to just temporarily hide code that you suspect might

be causing a problem. Then if the problem persists, you can simply unhide that code

and make it visible again. To do this in Xcode, you just need to turn your code into

comments.

Remember, comments are text that Xcode completely ignores. You can create

comments in three ways:

•	 Add the // symbols at the beginning of each line that you want to

convert into a comment. This method lets you convert a single line

into a comment.

•	 Add the /* symbols at the beginning of code and add the */ at the end

of code you want to convert into a comment. This method lets you

convert one or more lines into a comment.

•	 Select the lines of code you want to turn into a comment and choose

Editor ➤ Structure ➤ Toggle Comments (or press Command+/). This

method lets you convert one or more lines into a comment by placing

the // symbols at the beginning of each line of code you selected.

Chapter 2 Debugging Code

31

Note  Xcode color codes comments in green (or whatever color you may have
defined to identify comments). After creating a comment, make sure Xcode color
codes it properly to ensure you have created a comment. If Xcode fails to recognize
your comments, it will treat your text as a valid Swift command, which will likely
keep your code from running properly.

By turning code into comments, you essentially hide that code from Xcode. Now if

you want to turn that comment back into code again, you just remove the // or /* and */

symbols that define your commented out code.

If you commented out code by choosing Editor ➤ Structure ➤ Toggle Comments (or

pressing Command+/), just repeat the command again to convert that commented code

back to working code once more.

Besides turning your code into comments to temporarily hide it, a second simple

debugging technique is to use the print command. The idea is to put the print command

in your code to print out the values of a variable wherever you think your code may be

making a mistake.

By doing this, you can see what values one or more variables may contain. Putting

multiple print commands throughout your program gives you a chance to make sure

your program is running correctly.

To see how using the print command along with commenting out code can work to

help you debug a program, follow these steps:

	 1.	 Choose File ➤ New ➤ Project to create a Single View App iOS

project and name it DebugApp.

	 2.	 Click the ViewController.swift file in the Navigator pane and edit

the ViewController.swift file as follows:

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 var myMessage = "Temperature in Celsius:"

 let temp = 100.0

 print (myMessage + "\(temp)")

Chapter 2 Debugging Code

32

 myMessage = "Temperature in Fahrenheit:"

 print (myMessage + "\(C2F(tempC: temp))")

 }

 func C2F (tempC : Double) -> Double {

 var tempF : Double

 tempF = tempC + 32 * 9/5

 return tempF

 }

}

	 3.	 Click the Run button or choose Product ➤ Run. The Simulator

window appears showing a blank screen.

	 4.	 Choose Simulator ➤ Quit Simulator. Notice that the debug area at

the bottom of the middle Xcode pane displays the following text

from the two print statements in our code:

Temperature in Celsius:100.0

Temperature in Fahrenheit:157.6

If you know anything about temperatures in Fahrenheit and Celsius, you know that

the boiling point in Celsius is 100 degrees and the boiling point in Fahrenheit is 212

degrees. Yet our temperature conversion program calculates that 100 degrees Celsius is

equal to 157.6 degrees in Fahrenheit, which means the Fahrenheit temperature should

be 212 rather than 157.6. Obviously something is wrong, so let’s use the print command

and comments to help debug the problem.

	 1.	 Make sure the DebugApp project is loaded in Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane and edit

the C2F function as follows:

func C2F (tempC : Double) -> Double {

 var tempF : Double

 tempF = tempC + 32 //* 9/5

 return tempF

}

Chapter 2 Debugging Code

33

This comment will let us check if the tempC parameter is properly

coming into the C2F function and getting stored in the tempF

variable.

	 3.	 Add a “print (tempC)” command above the return statement as

follows:

func C2F (tempC : Double) -> Double {

 var tempF : Double

 tempF = tempC + 32 //* 9/5

 print (tempF)

 return tempF

}

	 4.	 Click the Run button or choose Product ➤ Run. The Simulator

window appears showing a blank screen.

	 5.	 Choose Simulator ➤ Quit Simulator. Notice that the debug area at

the bottom of the middle Xcode pane displays the following text

from the two print statements in our code:

Temperature in Celsius:100.0

132.0

Temperature in Fahrenheit:132.0

By commenting out the calculation part of the code and using

the “print (tempF)” command, we can see that the C2F function

is storing 100.0 correctly in the tempC variable and adding 32

to this value before storing it in the tempF variable. Because we

commented out the calculation part of the code, we can assume

that the error must be in our commented out code.

Although the formula might look correct, the error occurs because

of the way Swift (and most programming languages) calculate

formulas. First, they start from left to right. Second, they calculate

certain operations such as multiplication before addition.

Chapter 2 Debugging Code

34

The error occurs because our conversion formula first multiples

32 by 9 (288) and then divides the result (288) by 5 to get

57.6. Finally, it adds 57.6 to 100.0 to get the incorrect result of

157.6. What it should really be doing is multiplying 9/5 by the

temperature in Celsius and then adding 32 to the result.

	 6.	 Modify the C2F function as follows:

func C2F (tempC : Double) -> Double {

 var tempF : Double

 tempF = tempC * (9/5) + 32

 print (tempF)

 return tempF

}

	 7.	 Click the Run button or choose Product ➤ Run. The Simulator

window appears showing a blank screen.

	 8.	 Choose Simulator ➤ Quit Simulator. Look in the debug area and

you’ll see that the program now correctly converts 100 degrees

Celsius to 212 degrees Fahrenheit.

For simple debugging, turning code temporarily into comments and using the

print command can work, but it’s fairly clumsy to keep adding and removing comment

symbols and print commands. A much better solution is to use breakpoints and variable

watching, which essentially duplicates using comments and print commands.

�Using the Xcode Debugger
While comments and the print command can help you isolate problems in your code,

they can be clumsy to use. The print command can be especially tedious since you have

to type it into your code and then remember to remove it later when you’re ready to ship

your app.

Although leaving one or more print commands buried in your program won’t likely

hurt your program’s performance, it’s poor programming practice to leave code in your

program that no longer serves any purpose.

Chapter 2 Debugging Code

35

As an alternative to typing the print command throughout your program, Xcode

offers a more convenient alternative using the Xcode debugger. The debugger gives you

two ways to hunt out and identify bugs in your program:

•	 Breakpoints

•	 Variable watching

�Using Breakpoints
Breakpoints let you identify a specific line in your code where you want your program to

stop. Once your program stops, you can step through your code, line by line. As you do

so, you can also peek at the contents of one or more variables to check if the variables are

holding the right values.

For example, if your program converts Celsius to Fahrenheit, but somehow converts

100 degrees Celsius into –41259 degrees Fahrenheit, you know your code isn’t working

right. By inserting breakpoints in your code and examining the values of your variables

at each breakpoint, you can identify where your code calculates its values. The moment

you spot the line where it miscalculates a value, you know the exact area of your program

that you need to fix.

You can set a breakpoint by doing one of the following:

•	 Clicking to the left of the code where you want to set the breakpoint

•	 Moving the cursor to a line where you want to set the breakpoint and

pressing Command+\

•	 Choosing Debug ➤ Breakpoints ➤ Add Breakpoint at Current Line

Xcode displays breakpoints as blue arrows in the left margin as shown in Figure 2-4.

Chapter 2 Debugging Code

36

�Stepping Through Code
Once a breakpoint has stopped your program from running, you can step through

your code line by line using the Step command. Xcode offers a variety of different Step

commands, but the three most common are

•	 Step Over

•	 Step Into

•	 Step Out

The Step Over command examines the next line of code, treating function or method

calls as a single line of code.

The Step Into command works exactly like the Step Over command until it highlights

a function or method call. Then it jumps to the first line of code in that function or

method.

The Step Out command is used to prematurely exit out of a function or method that

you entered using the Step Into command. The Step Out command returns to the line of

code where a function or method was called.

All three Step commands are used after a program temporarily stops at a breakpoint.

By using a Step command, you can examine your code, line by line, and see how values

stored in different variables may change.

Figure 2-4.  Breakpoints appear in the left margin

Chapter 2 Debugging Code

37

Such variable watching lets you examine the contents of one or more variables to

verify if it’s holding the correct data. The moment you spot a variable holding incorrect

data, you can zero in on the line of code that’s creating that error.

The best part about breakpoints is that you can easily add and remove them since

they don’t modify your code at all, unlike comments and multiple print commands.

Xcode can remove all breakpoints for you automatically so you don’t have to hunt

through your code to remove them one by one.

To see how to use breakpoints, step commands, and variable watching, follow these

steps:

	 1.	 Make sure the DebugApp project is loaded in Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane and

modify the C2F function as follows:

func C2F (tempC : Double) -> Double {

 var tempF : Double

 tempF = tempC + 32 * 9/5

 return tempF

}

	 3.	 Move the cursor on the following line in the viewDidLoad

method:

var myMessage = "Temperature in Celsius:"

	 4.	 Choose Debug ➤ Breakpoints ➤ Add Breakpoint at Current Line.

Xcode displays a breakpoint as a blue arrow.

	 5.	 Click the Run button or choose Product ➤Run. The Simulator

window appears showing a blank screen. Notice that Xcode

highlights the line where the breakpoint appears and that the

myMessage variable does not yet contain a value as shown in the

debug area in Figure 2-5.

Chapter 2 Debugging Code

38

	 6.	 Choose Debug ➤ Step Over (or press F6). Xcode highlights the

next line under your breakpoint. The information in the left-hand

side of the debug area displays the current values that your

program is using as shown in Figure 2-6. Notice that after the

breakpoint code runs, the value of the myMessage variable is now

defined as the string “Temperature in Celsius:”.

Figure 2-5.  A breakpoint temporarily stops a program from running

Chapter 2 Debugging Code

39

	 7.	 Choose Debug ➤ Step Over (or press F6) several more times until

Xcode highlights the following line:

print (myMessage + "\(C2F(tempC: temp))")

	 8.	 Choose Debug ➤ Step Into (or press F7). Xcode now highlights the

first line of code in the C2F function as shown in Figure 2-7.

Figure 2-6.  By watching how variables change, you can see how each line of code
affects each variable

Chapter 2 Debugging Code

40

	 9.	 Choose Debug ➤ Step Out (or press F8). Xcode now highlights the

line that called the C2F function.

	 10.	 Choose Debug ➤ Continue to continue running the program until

the next breakpoint. In this program there’s only one breakpoint

so the program displays its empty user interface.

	 11.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

	 12.	 Choose Debug ➤ Deactivate Breakpoints. Xcode dims the

breakpoint. Xcode will ignore deactivated breakpoints.

	 13.	 Click the Run button or choose Product ➤ Run. The Simulator

window appears showing a blank screen. Notice that since you

deactivated breakpoints, Xcode runs the entire program without

stopping at any of the breakpoints.

Figure 2-7.  The Step Into command lets you step through the code stored in a
function or method

Chapter 2 Debugging Code

41

	 14.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

	 15.	 Choose Debug ➤ Activate Breakpoints. Notice that Xcode no

longer dims the breakpoint arrow in the left margin any more.

	 16.	 Move the mouse pointer over the breakpoint and drag to the left

or right.

	 17.	 Release the left mouse button. Xcode deletes the breakpoint.

�Managing Breakpoints
There’s no limit to the number of breakpoints you can put in a program so feel free

to place as many as you need to help you track down an error. Of course if you place

breakpoints in a program, you may lose track of how many breakpoints you’ve set

and where they might be set. To help you manage your breakpoints, Xcode offers a

Breakpoint Navigator.

You can open the Breakpoint Navigator in one of three ways:

•	 Choose View ➤ Navigators ➤ Show Breakpoint Navigator.

•	 Press Command+8.

•	 Click the Show Breakpoint Navigator icon in the Navigator pane.

The Breakpoint Navigator lists all the breakpoints set in your program and identifies

the files the breakpoints are in and the line number of each breakpoint as shown in

Figure 2-8.

Chapter 2 Debugging Code

42

Since the Breakpoint Navigator identifies breakpoints by line number, you might

want to display line numbers in the Xcode editor (see Figure 2-8). To turn on line

numbers, follow these steps:

	 1.	 Choose Xcode ➤ Preferences. The Xcode Preferences window

appears.

	 2.	 Click the Text Editing icon. The Text Editing options appear.

	 3.	 Select the “Line numbers” check box as shown in Figure 2-9.

Figure 2-8.  The Breakpoint Navigator identifies all your breakpoints

Chapter 2 Debugging Code

43

	 4.	 Click the close button (the red button) in the upper left corner of

the Xcode Preferences window. Xcode now displays line numbers

in the left margin of the editor.

To see how to use the Breakpoint Navigator, follow these steps:

	 1.	 Make sure the DebugApp project is loaded in Xcode.

	 2.	 Turn on line numbers in Xcode.

	 3.	 Click the ViewController.swift file in the Navigator pane.

Figure 2-9.  The Line numbers check box lets you show or hide line numbers in the
Xcode editor

Chapter 2 Debugging Code

44

	 4.	 Place three breakpoints anywhere in your code using whatever

method you like best such as clicking in the left margin of the

Xcode editor, pressing Command+\, or choosing Debug ➤

Breakpoints ➤ Add Breakpoint at Current Line). (The exact

location doesn’t matter.)

	 5.	 Choose View ➤ Navigators ➤ Show Breakpoint Navigator. The

Breakpoint Navigator displays your three breakpoints.

	 6.	 Click any breakpoint. Xcode displays the file containing your

chosen breakpoint.

	 7.	 Right-click any breakpoint in the Breakpoint Navigator pane.

A popup menu appears as shown in Figure 2-10.

	 8.	 Choose Disable Breakpoint. Notice this lets you deactivate or

disable breakpoints individually instead of deactivating all of them

at once through the Debug ➤ Deactivate Breakpoints command.

	 9.	 Right-click any breakpoint in the Breakpoint Navigator pane and

choose Delete Breakpoint. (Another way to delete a breakpoint is

to drag the breakpoint away from your code and release the left

mouse button.)

	 10.	 Delete all your breakpoints until no more breakpoints are left.

Figure 2-10.  The Breakpoint Navigator lets you see where you have placed
breakpoints throughout a project

Chapter 2 Debugging Code

45

�Using Symbolic Breakpoints
When you create a breakpoint, you must place it on the line where you want your

program’s execution to temporarily stop. However, this often means guessing where the

problem might be and then using the various step commands to examine your code line

by line.

To avoid this problem, Xcode offers a Symbolic breakpoint. A Symbolic breakpoint

stops program execution only when a specific function or method runs. In case you

don’t want your program’s execution to stop every time a particular function or method

runs, you can tell Xcode to ignore it a certain number of times such as 10. That means

the function or method will run up to 10 times, and then on the 11th time it’s called, the

Symbolic breakpoint will temporarily halt execution so you can step through your code

line by line.

To create a Symbolic breakpoint, you can define the following:

•	 Symbol – The name of the function or method to halt program

execution

•	 Module – The file name containing the function or method defined

by the Symbol text field

•	 Ignore – The number of times from 0 or more that you want the

function or method to run before temporarily halting program

execution

To see how a Symbolic breakpoint works, follow these steps:

	 1.	 Make sure the DebugApp project is loaded in Xcode.

	 2.	 Choose Debug ➤ Breakpoints ➤ Create Symbolic Breakpoint.

A Symbolic Breakpoint popup window appears as shown in

Figure 2-11.

Chapter 2 Debugging Code

46

	 3.	 Click in the Symbol text field and type C2F, which is the name of

the function or method you want to examine.

	 4.	 (Optional) If the function or method name you specified in the

Symbol text field is used in other files, click in the Module text

field and type a file name. This file name will limit the Symbolic

breakpoint only to that function or method in that particular

file. Since the C2F function is only used once, you can leave the

Module text field empty.

	 5.	 (Optional) Click in the Ignore text field and type a number to

specify how many times to ignore a function or method being

called before halting program execution. In this case, leave 0 in

the Ignore text field.

	 6.	 Click anywhere away from the Symbolic Breakpoint popup

window to make it disappear.

	 7.	 Click the Run button or choose Product ➤ Run. The Simulator

window appears showing a blank screen. The C2F Symbolic

breakpoint causes the program to temporarily halt execution on

the first line of code in the C2F function that calculates a result as

shown in Figure 2-12.

Figure 2-11.  The Symbolic Breakpoint popup window lets you define a breakpoint

Chapter 2 Debugging Code

47

	 8.	 Choose Product ➤ Stop, or click the Stop button, to make your

program stop running.

	 9.	 Choose View ➤ Navigators ➤ Show Breakpoint Navigator. The

Breakpoint Navigator pane appears.

	 10.	 Right-click the C2F breakpoint in the Breakpoint Navigator pane,

and when a popup menu appears, choose Delete Breakpoint.

There should be no breakpoints displayed in the Breakpoint

Navigator pane.

Note  Another way to set a breakpoint without specifying a specific line of code
is to create an Exception breakpoint. Normally if your program crashes, Xcode
displays a bunch of cryptic error messages and you have no idea what caused the
error. If you set an Exception breakpoint, Xcode can identify the line of code that
created the crash so you can fix it.

Figure 2-12.  The Symbolic breakpoint halts program execution in the C2F
function defined by the Symbol text field

Chapter 2 Debugging Code

48

�Using Conditional Breakpoints
Breakpoints normally stop program execution at a specific line every time. However, you

may want to stop program execution on a particular line only if a certain condition holds

true, such as if a variable exceeds a certain value, which can signal when something has

gone wrong.

To see how a Conditional breakpoint works, follow these steps:

	 1.	 Make sure the DebugApp project is loaded in Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Place a breakpoint on the following line by clicking in the left margin

or moving the cursor in the line and pressing Command+\ or

choosing Debug ➤ Breakpoints ➤ Add Breakpoint at Current Line:

print (myMessage + "\(C2F(tempC: temp))")

	 4.	 Choose View ➤ Navigators ➤ Show Breakpoint Navigator, or click

the Breakpoint Navigator icon. The Breakpoint Navigator pane

appears, showing the breakpoint you just created.

	 5.	 Right-click the breakpoint in the Breakpoint Navigator pane and

choose Edit Breakpoint. A popup window appears.

	 6.	 Click in the Condition text field, and type C2F(tempC: temp) > 20

as shown in Figure 2-13.

Figure 2-13.  The Symbolic breakpoint halts program execution in the C2F
function defined by the Symbol text field

Chapter 2 Debugging Code

49

	 7.	 Click the Run button or choose Product ➤ Run. Xcode highlights

your breakpoint to temporarily stop program execution, which

means that the condition (C2F(temp) > 20) must be true.

	 8.	 Choose Product ➤ Stop, or click the Stop button, to make your

program stop running and return back to Xcode.

	 9.	 Choose View ➤ Navigators ➤ Show Breakpoint Navigator, right-

click the breakpoint you created, and choose Edit Breakpoint. The

popup window appears.

	 10.	 Click in the Condition text field and edit the text so it reads

C2F(temp > 500). Press Enter.

	 11.	 Click the Run button or choose Product ➤ Run. Notice that this

time your breakpoint does not stop program execution because its

condition (C2F(temp) > 500) is not true. Because the breakpoint

didn’t stop your app, your app’s blank user interface appears.

	 12.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

	 13.	 Drag the breakpoint away from the left margin and release the

left mouse button to delete the breakpoint. (You can also right-

click the breakpoint in the Breakpoint Navigator pane and choose

Delete Breakpoint.)

�Summary
Errors or bugs are unavoidable in any app. While syntax errors are easy to find and fix,

logic errors can be tougher to find because you thought your code would create one

type of result but it winds up creating a different result. Now you’re left trying to figure

out what you did wrong when you thought you were doing everything right. Even harder

errors to track down are runtime errors that occur seemingly at random because of

unknown conditions that affect an app.

To help you track down and eliminate most bugs, you can use the print command

along with comments, but for most robust debugging, you should use Xcode’s built-in

debugger. With the debugger you can set breakpoints in your code and watch how values

get stored in one or more variables.

Chapter 2 Debugging Code

50

A conditional breakpoint only stops program execution when a certain condition

occurs. A Symbolic breakpoint only stops program execution when a specific function or

method gets called. Once a breakpoint stops a program, you can continue examining your

code line by line using various step commands. The Step Into command lets you view code

stored inside a function or method, while the Step Out command lets you prematurely exit

out of a function or method and jump back to the function or method call.

By using breakpoints and step commands, you can exhaustively examine how your

program works, line by line, to eliminate as many errors as possible. The fewer errors

your app contains, the happier your users will be.

Chapter 2 Debugging Code

51
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_3

CHAPTER 3

Understanding Closures
Reading a single sentence isn’t difficult for most people, but when you combine

thousands of sentences together, reading a long mass of text can be cumbersome. That’s

why people divide large amounts of text into parts such as paragraphs and chapters.

Programming is no different.

Rather than write code as one large mass of text, programmers typically divide a

large program into smaller functions where each function performs a single task. Not

only do functions help make a large program easier to understand, but functions also act

like building blocks that you can reuse in other programs.

You should already be familiar with the standard way to create a function by using

the func keyword followed by a descriptive name, parameter list, and a block of code

such as

 func descriptiveName() {

 // Code here

 }

To run a function, you have to call it by name such as

descriptiveName()

If a function returns a value, you can assign a function to represent a value such as

var x = descriptiveName()

To use functions, you need to follow a two-step process:

	 1.	 Create a function.

	 2.	 Call that function.

52

Another way to write a function is as a closure. Closures simply let you create and call

a function in a single step. By using closures as a different way to write functions, you can

write more concise code (with the drawback of being harder to read and understand).

Closures are most often used in completion handlers that run as soon as another

command finishes running as shown in Figure 3-1.

Figure 3-1.  Closures are often used in completion handlers

You could simply write one command followed by a function call immediately after

it, but a completion handler makes it obvious that the command and its completion

handler work together.

Closures can be written in several different ways. When you create a function, you

need to use the func keyword followed by a descriptive name, a parameter list, and code

that calculates a result such as

func multiplyBy2 (x: Int) -> Int {

 return x * 2

}

One way to rewrite this function as a closure involves dropping the func keyword and

the function name, then enclose the rest of the code in curly brackets like this:

let y = {(x: Int) -> Int in return x * 2}

A second way to write a closure is to eliminate the parameter list altogether like this:

let z = {x in return x * 2}

Still another shortcut is to eliminate the return keyword altogether like this:

let w = {x in x * 2}

An even more condensed version of a closure simply displays the return calculation

by eliminating any variables and replacing them with placeholders that identify different

parameters such as

let v = {$0 * 2}

Chapter 3 Understanding Closures

53

To see how to use closures, follow these steps:

	 1.	 Choose File ➤ New ➤ Playground and create an iOS Blank

playground.

	 2.	 Name it ClosurePlayground.

	 3.	 Type the following:

print ("func multiplyBy2 (x: Int) -> Int {")

func multiplyBy2 (x: Int) -> Int {

 return x * 2

}

print(multiplyBy2(x: 4))

print(multiplyBy2(x: 17))

print("{(x: Int) -> Int in return x * 2}")

let y = {(x: Int) -> Int in return x * 2}

print (y(4))

print (y(17))

print("{x in return x * 2}")

let z = {x in return x * 2}

print (z(4))

print (z(17))

print("{x in x * 2}")

let w = {x in x * 2}

print (w(4))

print (w(17))

print("{$0 * 2}")

let v = {$0 * 2}

print(v(4))

print(v(17))

Chapter 3 Understanding Closures

54

	 4.	 Click the Run button. The debug area prints the following:

func multiplyBy2 (x: Int) -> Int {

8

34

{(x: Int) -> Int in return x * 2}

8

34

{x in return x * 2}

8

34

{x in x * 2}

8

34

{$0 * 2}

8

34

Notice how all versions of the closure work exactly the same as the function

declaration. The only difference is how concise each written closure appears. By

understanding the different ways closures can be written, you can recognize them in

code written by other people.

When it’s time to write completion handlers, you can use a closure and write it out in

whatever style you wish that makes most sense to you. For simplicity, many programmers

use the concise version that uses $0 as a placeholder for the first passed parameter, $1 for

the second passed parameter, $2 for the third passed parameter, and so on.

�Closures with Multiple Parameters
When declaring a function, you need to explicitly define the data type of each parameter

such as

func addNumbers (x: Int, y: Int) -> Int {

 return x + y

}

Chapter 3 Understanding Closures

55

When using closures, you need to enclose all parameters inside parentheses. In

many cases, you do not need to define the data type of each parameter since Swift can

infer that value based on the data type of the return value. For example, if the return

value data type is an integer, Swift infers that the passed parameters must be integers as

well such as

{(x, y) -> Int in return x + y}

However, if there is any ambiguity, you must explicitly define the data types of your

parameters such as

{(x: Int, y: Int) in return x + y}

{(x: Int, y: Int) in x + y}

{$0 as Int + $1 as Int}

Notice that the top two examples define the integer data type with a colon and the

Int keyword, while the last example defines the integer data type with the “as” and Int

keywords.

Modify your ClosurePlayground file as follows and click the Run button:

print ("func addNumbers (x: Int, y: Int) -> Int ")

func addNumbers (x: Int, y: Int) -> Int {

 return x + y

}

print(addNumbers(x: 4, y: 5))

print(addNumbers(x: 17, y: 9))

print("{(x, y) -> Int in return x + y}")

let y = {(x, y) -> Int in return x + y}

print (y(4, 5))

print (y(17, 9))

print("{(x: Int, y: Int) in return x + y}")

let z = {(x: Int, y: Int) in return x + y}

print (z(4, 5))

print (z(17, 9))

Chapter 3 Understanding Closures

56

print("{(x: Int, y: Int) in x + y}")

let w = {(x: Int, y: Int) in x + y}

print (w(4, 5))

print (w(17, 9))

print("{$0 as Int + $1 as Int}")

let v = {$0 as Int + $1 as Int}

print(v(4, 5))

print(v(17, 9))

�Understanding Value Capturing
When you declare variables and constants within a function, they can only be accessed

inside that function. However, when you declare a variable or constant outside of a

function, that function can access that value as shown in Figure 3-2.

Figure 3-2.  A function can access variables inside and above a function

Figure 3-3.  Values declared inside a function cannot be accessed outside that
function

In Figure 3-2, the “randomValue” constant is declared outside of the function but the

function can still access its value. However, the “wildcard” constant is declared inside the

function so it can only be accessed inside that function and nowhere else.

Since “wildcard” is declared inside the function, we cannot access that value outside

that function as shown in Figure 3-3.

Chapter 3 Understanding Closures

57

Because closures are just another way of writing a function, closures can also capture

and modify values declared outside of their scope.

�Using Closures Like Data
Perhaps the most versatile use of closures is to treat them like chunks of data that you

can use like any fixed value. That means you can pass a closure as a parameter in a

function (or another closure), store closures in data structures like arrays, or assign a

closure to a variable.

When you declare a function, you must give that function a unique name such as

func addNumbers (x: Int, y: Int) -> Int {

 return x + y

}

To call this function, you would use the function name and pass it parameters such as

addNumbers(x: 17, y: 9)

Likewise, you can assign a closure to a variable name like this:

let addNumbers1 = {(x, y) -> Int in return x + y}

let addNumbers2 = {(x: Int, y: Int) in return x + y}

let addNumbers3 = {(x: Int, y: Int) in x + y}

let addNumbers4 = {$0 as Int + $1 as Int}

Then you can run this closure by using its name and pass it parameters such as

addNumbers1(17, 9)

addNumbers2(17, 9)

addNumbers3(17, 9)

addNumbers4(17, 9)

You can pass a closure as data to another closure like this:

addNumbers2(17, addNumbers1(17,9))

Since the value of addNumbers1(17,9) is 26, the preceding code is equivalent to

addNumbers2(17, 26)

Chapter 3 Understanding Closures

58

This calculates the value 43 (17 + 26).

Another interesting use for closures is to store them in data structures. Unlike fixed

values, the same closure can represent different values depending on its parameters.

Modify the ClosurePlayground as follows and click the Run button:

let addNumbers1 = {(x, y) -> Int in return x + y}

let addNumbers2 = {(x: Int, y: Int) in return x + y}

let addNumbers3 = {(x: Int, y: Int) in x + y}

let addNumbers4 = {$0 as Int + $1 as Int}

let closureArray = [addNumbers1(9,1), addNumbers2(2,3), addNumbers3(7,6),

addNumbers4(10,2)]

print (closureArray.count)

for i in closureArray {

 print(i)

}

The first four lines define four different closures that work exactly alike, which is to

accept two integers as parameters, add them together, and return the sum. The fifth line

creates an array that holds each closure where each closure gets different parameters.

The sixth line prints the total number of items in the closureArray (4) and then the

for-in loop prints each item in the closureArray so the output looks like this:

10

5

13

12

Remember, closures are functions. There are different ways to write a closure where

each succeeding version gets sparser and more cryptic. Suppose you had a function like

this:

func multiplyBy2 (x: Int) -> Int {

 return x * 2

}

Chapter 3 Understanding Closures

59

You could rewrite this function as a closure in four different ways:

{(x: Int) -> Int in return x * 2}

{x in return x * 2}

{x in x * 2}

{$0 * 2}

When passing parameters into a closure, enclose them in parentheses. In case the data

type of a closure’s parameters might not be clear, explicitly define the data type like this:

{(x: Int, y: Int) in return x + y}

{(x: Int, y: Int) in x + y}

{$0 as Int + $1 as Int}

�Summary
Closures are nothing more than another way to write a function. Instead of creating a

function and then calling that function in a two-step process, you can create and use a

closure in one step.

Be aware that closures can access and modify variables declared outside of the

closure. You can assign closures to a name or simply use closures in place of data. Any

place where you can use data, you can use a closure. Just be careful since closures

aren’t always obvious how they work. Closures offer efficiency in exchange for possible

confusion so use closures sparingly or add comments to explain how a closure works.

Chapter 3 Understanding Closures

61
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_4

CHAPTER 4

Multithreaded
Programming Using
Grand Central Dispatch
The next time you pay for groceries in a supermarket, look at the lines at the checkout

stands. If there’s only one open checkout stand, there’s likely a long line of customers

waiting to pay. That means everyone has to wait their turn before they can leave.

However if there are multiple checkout stands open, more customers can pay at the

same time and the wait time for everyone is much less. That’s the basic idea behind

multithreaded programming.

In the old days of computers, tasks were fairly simple so processors were fast enough

to handle them one at a time no matter how many there might be. Gradually as software

got more sophisticated and tasks got more complex, processors couldn’t handle so many

complicated tasks simultaneously. Speeding up the processor by itself could only solve

the problem to a limited extent, so processors started offering multiple cores, which were

essentially separate processors that could work on different tasks simultaneously.

While multicore processors offered a solution, the bigger problem was none of

these multicore processors could work to their full potential unless the software took

advantage of these multiple cores. This forced programmers to write code that could run

at the same time known as concurrent programming. Writing code was hard enough,

and writing additional code to make different parts of a program run at the same time

was often confusing and difficult. As a result, most programmers didn’t bother, which

meant their software wouldn’t take full advantage of multicore processors.

62

To solve the problem of managing code to run in parallel, Apple created a solution

called Grand Central Dispatch (GCD), which provides support for concurrent code

execution on multicore hardware in iOS and macOS. Instead of forcing developers to

worry about the details of managing code to run in parallel, known as threads, Grand

Central Dispatch lets developers simply identify which chunks of code to run at the same

time, and Grand Central Dispatch takes care of the actual details to do so.

In the old days, software was mostly self-contained in that it didn’t need to rely

on anything else. Today, software often depends on external factors that are largely

unpredictable such as waiting for a file to load or a network connection to complete.

While waiting, the entire program is effectively paused. If this pause is too long, it makes

the program look like it’s frozen and unresponsive.

That’s why you want to use Grand Central Dispatch to allow multiple threads of

execution within a program. That way even if a single thread is stuck waiting for a

specific event, the other threads can keep going. By using Grand Central Dispatch, your

apps should never feel slow and unresponsive to the user.

Note  Grand Central Dispatch works identically in both iOS and macOS.

�Understanding Threads
To fully understand the advantage of Grand Central Dispatch, it’s important to see how

delays can ruin the responsiveness of an app in the eyes of a user. To do this, we’ll see

what happens when a process runs for too long, essentially forcing the entire app to wait

until the process finishes. During this time, the app appears frozen and unresponsive.

We’ll deliberately create an app that will lock up the user interface. To see how to

create an app that appears unresponsive, follow these steps:

	 1.	 Create a new iOS Single View App and name it ThreadApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon to open the Object Library window.

	 4.	 Drag and drop a button, a text view, and a slider anywhere on the

view as shown in Figure 4-1.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

63

	 5.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to

Suggested Constraints at the bottom half of the menu. Xcode adds

constraints to the button, text view, and slider.

	 6.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

	 7.	 Move the mouse pointer over the text view, hold down the

Control key, and Ctrl-drag from the text view to under the “class

ViewController” line in the ViewController.swift file.

	 8.	 Release the Control key and the left mouse button. A popup

window appears.

	 9.	 Click in the Name text field and type resultsTextView. Then click

the Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var resultsTextView: UITextView!

	 10.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag from the button to above the last curly bracket

at the bottom of the ViewController.swift file.

	 11.	 Release the Control key and the left mouse button. A popup

window appears.

Figure 4-1.  Adding a button, a text view, and a slider to create the user interface

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

64

	 12.	 Click in the Name text field, type doButton, click the Type popup

menu and choose UIButton, then click the Connect button. Xcode

creates a blank IBAction method as follows:

@IBAction func doButton(_ sender: UIButton) {

}

	 13.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 14.	 Click the ViewController.swift file in the Navigator pane.

	 15.	 Add the following code underneath the viewDidLoad method:

func fetchSomethingFromServer() -> String {

 Thread.sleep(forTimeInterval: 1)

 return "Hi there"

}

func processData(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 2)

 return data.uppercased()

}

func calculateFirstResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 3)

 let message = "Number of chars: \(String(data).count)"

 return message

}

func calculateSecondResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 4)

 return data.replacingOccurrences(of: "E", with: "e")

}

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

65

	 16.	 Edit the doButton IBAction method as follows:

@IBAction func doButton(_ sender: UIButton) {

 let startTime = NSDate()

 self.resultsTextView.text = ""

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 let firstResult = self.calculateFirstResult(processedData)

 �let secondResult = self.calculateSecondResult(processedData)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

 self.resultsTextView.text = resultsSummary

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince(startTime as

Date)) seconds")

 }

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var resultsTextView: UITextView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 func fetchSomethingFromServer() -> String {

 Thread.sleep(forTimeInterval: 1)

 return "Hi there"

 }

 func processData(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 2)

 return data.uppercased()

 }

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

66

 func calculateFirstResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 3)

 let message = "Number of chars: \(String(data).count)"

 return message

 }

 func calculateSecondResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 4)

 return data.replacingOccurrences(of: "E", with: "e")

 }

 @IBAction func doButton(_ sender: UIButton) {

 let startTime = NSDate()

 self.resultsTextView.text = ""

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 let firstResult = self.calculateFirstResult(processedData)

 let secondResult = self.calculateSecondResult(processedData)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

 self.resultsTextView.text = resultsSummary

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince(startTime

as Date)) seconds")

 }

}

	 17.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears as shown in Figure 4-2.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

67

	 18.	 Drag the slider left and right. Notice that you can easily drag the

slider back and forth.

	 19.	 Click the button. Notice that the button dims. Try dragging the

slider back and forth. Because the app is running a process, the

user interface now appears frozen and unresponsive for about 10

seconds. After the process completes, it displays the results on the

screen as shown in Figure 4-3.

Figure 4-2.  The initial appearance of the user interface

Figure 4-3.  The altered appearance of the user interface

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

68

	 20.	 Drag the slider left and right. Notice that the slider now easily

moves once again.

	 21.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

This example lets you see how a process can freeze an app and make it appear

unresponsive even though the app is still running. If you submit an app that freezes its

user interface periodically, Apple will reject it from the App Store.

Most modern operating systems (including iOS) support multiple threads of

execution. If there’s just one processor core, the operating system will switch between all

executing threads, much like it switches between all executing processes. If more than

one core is available, the threads will be distributed among them, just as processes are.

All threads in a process share the same executable program code and the same

global data. Each thread can also have some data that is exclusive to the thread through

a special structure called a mutex (short for mutual exclusion) or a lock. Such a lock

ensures that a particular chunk of code can’t be run by multiple threads at once, which

can keep multiple threads from accessing the same data simultaneously.

When writing code, you need to make sure your code is thread-safe. As a

general rule, any code that controls the user interface is not thread-safe. Because

threads increase the chance of multiple processes interfering with each other, most

programmers don’t use threads directly. That’s why Apple created Grand Central

Dispatch (GCD) to help make concurrent programming easier and safer.

Note T o learn more about thread safety, read Apple’s documentation:
https://developer.apple.com/library/ios/documentation/
Cocoa/Conceptual/Multithreading/ThreadSafetySummary/
ThreadSafetySummary.html

�Using Grand Central Dispatch
A key concept of GCD is the queue. GCD splits tasks into units of work and puts those

units into queues for execution. The system manages the queues for us, executing units

of work on multiple threads. We don’t need to start or manage the background threads

directly, and we are freed from much of the bookkeeping that’s usually involved in

implementing multithreaded applications.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html
https://developer.apple.com/library/ios/documentation/Cocoa/Conceptual/Multithreading/ThreadSafetySummary/ThreadSafetySummary.html

69

GCD provides a number of predefined queues, including a queue that’s guaranteed

to always do its work on the main thread which is perfect for code that manages the user

interface (the non-thread-safe UIKit software framework). GCD lets you create as many

queues as you need. Units of work added to a GCD queue will always be started in the order

they were placed in the queue. That said, they may not always finish in the same order, since

a GCD queue will automatically distribute its work among multiple threads, if possible.

To use GCD, we first need to create a queue using the DispatchQueue keyword such as

let queue1 = DispatchQueue(label: "queue1")

Once we’ve created a queue, we need to define the code to run in that queue. This

code runs in a closure and can run synchronously or asynchronously. An asynchronous

queue runs whenever the processor has time to complete it. A synchronous queue runs

and must complete before any other code can run. In general, asynchronous queues

are most useful when you want to run multiple tasks at the same time, but the order and

time that they complete isn’t important.

To make a queue run, we have to define whether it’s asynchronous or synchronous

and specify the code to run in a closure like this:

queue1.sync { () -> Void in

 // Code here

}

queue2.async { () -> Void in

 // Code here

}

To see how asynchronous queues can work, but may complete at different,

unpredictable times, follow these steps:

	 1.	 Choose File ➤ New ➤ Playground and create a Blank iOS

playground. Name this new playground QueuePlayground.

	 2.	 Edit the playground code so it looks like this:

import UIKit

let queue1 = DispatchQueue(label: "queue1")

let queue2 = DispatchQueue(label: "queue2")

let queue3 = DispatchQueue(label: "queue3")

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

70

queue1.async { () -> Void in

 print(queue1.label)

}

queue2.async { () -> Void in

 print(queue2.label)

}

queue3.async { () -> Void in

 print(queue3.label)

}

print("Program stopped")

This code creates three queues and then runs tasks in each queue

that simply prints the name of the queue. Finally, the code ends by

printing “Program stopped”.

	 3.	 Click the Run button. Notice that the debug area displays the

output of the code such as

queue1

Program stopped

queue2

queue3

	 4.	 Click the Run button to run the program again. Notice that the

output may change such as

Program stopped

queue1

queue3

queue2

Even though the code is identical, asynchronous queues may complete at different

times. Each time you click the Run button, you’ll likely see a different result. While you

can have multiple tasks running on different asynchronous queues, you cannot predict

when any given queue will complete its task.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

71

To see how synchronous queues work in the exact same order every time, modify the

playground code to change all async calls to sync as follows:

import UIKit

let queue1 = DispatchQueue(label: "queue1")

let queue2 = DispatchQueue(label: "queue2")

let queue3 = DispatchQueue(label: "queue3")

queue1.sync { () -> Void in

 print(queue1.label)

}

queue2.sync { () -> Void in

 print(queue2.label)

}

queue3.sync { () -> Void in

 print(queue3.label)

}

print("Program stopped")

No matter how many times you run this code, the output will always be predictable

and in order like this:

queue1

queue2

queue3

Program stopped

The only way you can change the order of the output is to change the position of the

queues such as putting queue3 ahead of queue1. Since synchronous queues are little

different than not using concurrency at all, asynchronous queues are used most often as

long as the order of task completion isn’t important.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

72

Now that we know how GCD can run multiple tasks at the same time, we need to use

GCD to fix the unresponsive user interface of our ThreadApp. First, we need to identify

which code is causing the delay. In our example, it’s this code inside the doButton

IBAction method:

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 let firstResult = self.calculateFirstResult(processedData)

 let secondResult = self.calculateSecondResult(processedData)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

 self.resultsTextView.text = resultsSummary

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince(startTime as Date))

seconds")

Logically, it would seem like we could simply wrap this code inside a closure and run

it in a queue. However, look out for this line:

self.resultsTextView.text = resultsSummary

This line updates the resultsTextView on the user interface. As a general rule,

updating the user interface in a queue is not thread-safe, which means trying to update

the user interface in a queue will cause an error. To see what happens when you try to

update the user interface within a queue, follow these steps:

	 1.	 Make sure the ThreadApp project is loaded in Xcode.

	 2.	 Click the ViewController.swift file.

	 3.	 Edit the doButton IBAction method as follows:

@IBAction func doButton(_ sender: UIButton) {

 let startTime = NSDate()

 self.resultsTextView.text = ""

 let queue = DispatchQueue.global(qos: .default)

 queue.async {

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

73

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 �let firstResult = self.calculateFirstResult(processedData)

 �let secondResult = self.calculateSecondResult(processedDa

ta)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

 self.resultsTextView.text = resultsSummary

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince(startTime

as Date)) seconds")

 }

}

First, we grab a preexisting global queue that’s always available,

using the DispatchQueue.global() function. That function takes

one argument to define a priority. If you specify a different priority

in the argument, you will actually get a different global queue,

which the system will prioritize differently. For now, we’ll stick

with the default global queue.

The queue is then passed to the queue.async() function, along

with the closure. GCD takes the closure and puts it on the queue,

from where it will be scheduled to run on a background thread

and executed one step at a time, just as when it was running in the

main thread.

Note that we defined a variable called startTime just before the

closure is created, and then use its value at the end of the closure.

Intuitively, this may not make sense because by the time the

closure is executed, the doButton IBAction method has returned.

However, the closure can “capture” the value of variables declared

ahead of it, allowing access.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

74

	 4.	 Click the Run button or choose Produce ➤ Run. Notice that Xcode

displays an error message in the debug area with a message such

as the following:

Main Thread Checker: UI API called on a background thread:

-[UITextView setText:]

PID: 94760, TID: 14970143, Thread name: (none), Queue name: com.

apple.root.default-qos, QoS: 0

Backtrace:

	 5.	 Choose Simulator ➤ Quit Simulator to return to Xcode where you

can see another error message highlighting the line that caused

the error as shown in Figure 4-4.

Figure 4-4.  Xcode highlights the line causing the error

To fix this problem, we need to update the user interface on the

main thread like this:

DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

}

Note A s a general rule, use the main thread any time you want to update the
user interface.

	 6.	 Edit the doButton IBAction method like this:

@IBAction func doButton(_ sender: UIButton) {

 let startTime = NSDate()

 self.resultsTextView.text = ""

 let queue = DispatchQueue.global(qos: .default)

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

75

 queue.async {

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 �let firstResult = self.calculateFirstResult(processedData)

 �let secondResult = self.calculateSecondResult(processedData)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

 DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

 }

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince

(startTime as Date)) seconds")

 }

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var resultsTextView: UITextView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 func fetchSomethingFromServer() -> String {

 Thread.sleep(forTimeInterval: 1)

 return "Hi there"

 }

 func processData(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 2)

 return data.uppercased()

 }

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

76

 func calculateFirstResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 3)

 let message = "Number of chars: \(String(data).count)"

 return message

 }

 func calculateSecondResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 4)

 return data.replacingOccurrences(of: "E", with: "e")

 }

 @IBAction func doButton(_ sender: UIButton) {

 let startTime = NSDate()

 self.resultsTextView.text = ""

 let queue = DispatchQueue.global(qos: .default)

 queue.async {

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 �let firstResult = self.calculateFirstResult(processedData)

 �let secondResult = self.calculateSecondResult(processedData)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

 DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

 }

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince

(startTime as Date)) seconds")

 }

 }

}

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

77

	 7.	 Click the Run button or choose Produce ➤ Run. The Simulator

screen appears.

	 8.	 Click the button.

	 9.	 Drag the slider left and right. Notice that even though the app is

processing, the user interface is still responsive. Eventually, the

app finishes its processing and displays its results in the text view,

but during that entire time, the user could still interact with the

interface.

	 10.	 Choose Simulator ➤ Quit Simulator.

�Displaying Feedback
Fixing the unresponsive user interface is a huge step, but there’s still a perception

problem. After the user taps the button, the app runs a process, but from the user’s point

of view, nothing seems to be happening. Whenever an app is busy processing, it’s best to

give the user some kind of visual feedback that the app is still running. To do that, we’ll

add an Activity Indicator View that displays a constantly spinning icon on the screen to

show that the app is doing something. When the app is finished processing, the spinning

icon will go away.

To add a spinning icon (Activity Indicator View), follow these steps:

	 1.	 Make sure the ThreadApp project is loaded in Xcode.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon to open the Object Library window.

	 4.	 Drag and drop an Activity Indicator View in the middle of the view

as shown in Figure 4-5.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

78

	 5.	 Click the Activity Indicator View to select it and then choose

Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the top half of the menu to set constraints on the

Activity Indicator View.

	 6.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

	 7.	 Move the mouse pointer over the Activity Indicator View,

hold down the Control key, and Ctrl-drag from the Activity

Indicator View to under the “class ViewController” line in the

ViewController.swift file.

	 8.	 Release the Control key and the left mouse button. A popup

window appears.

Figure 4-5.  The Activity Indicator View

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

79

	 9.	 Click in the Name text field and type spinnerView. Then click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var spinnerView: UIActivityIndicatorView!

	 10.	 Choose View ➤ Standard Editor ➤Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 11.	 Click the ViewController.swift file in the Navigator pane.

	 12.	 Modify the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 spinnerView.hidesWhenStopped = true

}

This spinnerView.hidesWhenStopped line hides the Activity

Indicator View until it starts animating. The moment it stops

animating, it disappears from view again.

	 13.	 Edit the doButton IBAction method by adding a startAnimating

line ahead of the queue and a stopAnimating line inside the main

thread as follows:

@IBAction func doButton(_ sender: UIButton) {

 let startTime = NSDate()

 self.resultsTextView.text = ""

 spinnerView.startAnimating()

 let queue = DispatchQueue.global(qos: .default)

 queue.async {

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 �let firstResult = self.calculateFirstResult(processedData)

 �let secondResult = self.calculateSecondResult(processedData)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

80

 DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

 self.spinnerView.stopAnimating()

 }

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince

(startTime as Date)) seconds")

 }

}

	 14.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 15.	 Click the button. Notice that the Activity Indicator View appears

and spins around. As soon as the app finishes processing, the

Activity Indicator View disappears again.

	 16.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Using Dispatch Groups
In the previous example, we created a background thread and then jumped back to

the main thread to update the user interface. While this is acceptable, we can optimize

the code a bit further using dispatch groups. Right now our calculateFirstResult() and

calculateSecondResult() methods are called in sequence, yet there’s no reason to do this

since they’re completely independent of each other.

A better solution is to call these two methods in a dispatch group. This lets each

function run independent of the other, which can improve performance since the

methods are now operating concurrently rather than sequentially. Finally, we can also

use dispatch_group_notify() to specify an additional closure that will run only when all

the other closures in the group have completed running.

To create a dispatch group, we just need to create a DispatchGroup object like this:

let group = DispatchGroup()

Then we run each queue inside this dispatch group like this:

 queue.async(group: group) {

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

81

 firstResult = self.calculateFirstResult(processedData)

 }

To run a final closure after all other closures have finished, we create a group.notify

queue like this:

 group.notify(queue: queue) {

 �let resultsSummary = "First: [\(firstResult!)]\nSecond: [\

(secondResult!)]"

 DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

 self.spinnerView.stopAnimating()

 }

 let endTime = Date()

 �print("Completed in \(endTime.timeIntervalSince(startTime))

seconds")

 }

One final difference is that the group.notify and the queue.async queues need to

access the firstResult and secondResult variables, so we need to declare them outside of

both queues like this:

 var firstResult: String!

 var secondResult: String!

To see how to use dispatch groups, follow these steps:

	 1.	 Make sure the ThreadApp project is loaded in Xcode.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon to open the Object Library window.

	 4.	 Drag and drop a second button anywhere near the first button.

	 5.	 Double-click this second button, type Group, and press Enter. The

second button should now display “Group” as its title as shown in

Figure 4-6.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

82

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the top half of the menu. Xcode adds constraints to

the second button.

	 7.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

	 8.	 Move the mouse pointer over the second button, hold down the

Control key, and Ctrl-drag from the button to above the last curly

bracket in the ViewController.swift file.

	 9.	 Release the Control key and the left mouse button. A popup

window appears.

	 10.	 Click in the Name text field and type doGroupButton. Click the

Type popup menu and choose UIButton, then click the Connect

button. Xcode creates an IBAction method.

	 11.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

Figure 4-6.  Adding a second button to the user interface

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

83

	 12.	 Click the ViewController.swift file in the Navigator pane.

	 13.	 Edit the doGroupButton IBAction method as follows:

@IBAction func doGroupButton(_ sender: UIButton) {

 let startTime = Date()

 self.resultsTextView.text = ""

 spinnerView.startAnimating()

 let queue = DispatchQueue.global(qos: .default)

 queue.async {

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 var firstResult: String!

 var secondResult: String!

 let group = DispatchGroup()

 queue.async(group: group) {

 firstResult = self.calculateFirstResult(processedData)

 }

 queue.async(group: group) {

 �secondResult = self.calculateSecondResult(processed

Data)

 }

 group.notify(queue: queue) {

 �let resultsSummary = "First: [\(firstResult!)]\

nSecond: [\(secondResult!)]"

 DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

 self.spinnerView.stopAnimating()

 }

 let endTime = Date()

 �print("Completed in \(endTime.

timeIntervalSince(startTime)) seconds")

 }

 }

 }

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

84

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var resultsTextView: UITextView!

 @IBOutlet var spinnerView: UIActivityIndicatorView!

 override func viewDidLoad() {

 super.viewDidLoad()

 spinnerView.hidesWhenStopped = true

 }

 func fetchSomethingFromServer() -> String {

 Thread.sleep(forTimeInterval: 1)

 return "Hi there"

 }

 func processData(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 2)

 return data.uppercased()

 }

 func calculateFirstResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 3)

 let message = "Number of chars: \(String(data).count)"

 return message

 }

 func calculateSecondResult(_ data: String) -> String {

 Thread.sleep(forTimeInterval: 4)

 return data.replacingOccurrences(of: "E", with: "e")

 }

 @IBAction func doButton(_ sender: UIButton) {

 let startTime = NSDate()

 self.resultsTextView.text = ""

 spinnerView.startAnimating()

 let queue = DispatchQueue.global(qos: .default)

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

85

 queue.async {

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 �let firstResult = self.calculateFirstResult(processed

Data)

 �let secondResult = self.calculateSecondResult(processe

dData)

 let resultsSummary =

 "First: [\(firstResult)]\nSecond: [\(secondResult)]"

 DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

 self.spinnerView.stopAnimating()

 }

 let endTime = NSDate()

 �print("Completed in \(endTime.timeIntervalSince

(startTime as Date)) seconds")

 }

 }

 @IBAction func doGroupButton(_ sender: UIButton) {

 let startTime = Date()

 self.resultsTextView.text = ""

 spinnerView.startAnimating()

 let queue = DispatchQueue.global(qos: .default)

 queue.async {

 let fetchedData = self.fetchSomethingFromServer()

 let processedData = self.processData(fetchedData)

 var firstResult: String!

 var secondResult: String!

 let group = DispatchGroup()

 queue.async(group: group) {

 �firstResult = self.calculateFirstResult(processed

Data)

 }

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

86

 queue.async(group: group) {

 �secondResult = self.calculateSecondResult(processed

Data)

 }

 group.notify(queue: queue) {

 �let resultsSummary = "First: [\(firstResult!)]\

nSecond: [\(secondResult!)]"

 DispatchQueue.main.async {

 self.resultsTextView.text = resultsSummary

 self.spinnerView.stopAnimating()

 }

 let endTime = Date()

 �print("Completed in \(endTime.timeIntervalSince

(startTime)) seconds")

 }

 }

 }

}

	 14.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 15.	 Click the first button. Notice that when the process completes,

Xcode’s debug area displays a message such as

Completed in 10.00560998916626 seconds

	 16.	 Click the second button labelled “Group”. Notice that when this

process completes, Xcode’s debug area displays a message such as

Completed in 7.014010071754456 seconds

	 17.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

What was once a 10-second operation now takes just 7 seconds, thanks to the fact

that we’re running both of the calculations simultaneously. Obviously, our contrived

example gets the maximum effect because these two “calculations” don’t actually do

anything but cause the thread they’re running on to sleep. In a real app, the speedup

would depend on what sort of work is being done and what CPU is available.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

87

�Summary
Grand Central Dispatch (GCD) is a way to run multiple parts of your code separately.

You can do this using threads, but manipulating individual threads can be troublesome

and error-prone. Instead of working with threads, you can use GCD, which takes care of

the details needed to start, run, and stop different threads safely.

As you can see, GCD can help speed up bottlenecks in your code where a single

process might take a long time to complete, which can make your app seem to freeze and

be unresponsive. By using GCD at points in your app where speed is essential or where

your app lags in responses to the user, you can easily provide a better user experience,

even in situations where you can’t improve the actual performance.

Chapter 4 Multithreaded Programming Using Grand Central Dispatch

89
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_5

CHAPTER 5

Understanding the
Application Life Cycle
Every time you create an iOS project, it will likely include at least two .swift files:

ViewController.swift and AppDelegate.swift. A ViewController.swift file connects to a

scene in a storyboard and lets you write code that manages the user interface. Each

time you add another view controller scene to the storyboard, you’ll likely need another

ViewController.swift file (under a different name) to manage any user interface objects

such as buttons, text fields, or switches.

Where a project can have multiple ViewController.swift files connected to different

scenes in a storyboard, a project will have one AppDelegate.swift file that contains code

to manage the different states of an app. Initially, an app is not running. When the user

launches the app, the app becomes active and appears in the foreground. As long as the

user continues interacting with the app, it remains active in the foreground. However, if

the user switches to another app, this pushes the other app into the background. Finally,

the user may simply shut down an app altogether.

The AppDelegate.swift file monitors these different states so the app can respond

accordingly. When an app first launches, it might need to retrieve data such as the last

document the user had been working on before exiting the app. The app might also need

to load any custom settings the user might have defined earlier such as color settings.

If the user switches to another app and pushes the previously active app into the

background, that app might need to save data in case the user later exits out of the

app altogether without making it active again. Finally, if the user terminates the app

completely, the app might need one last chance to save data before exiting.

90

The various states an app might be in during its life cycle include

•	 Not Running – This is the state that all apps are in on a freshly

rebooted device.

•	 Active – This is the normal running state of an application when it’s

displayed on the screen to receive user input and update the display.

•	 Background – In this state, an app is given some time to execute some

code, but it can’t directly access the screen or get any user input. All

apps enter this state briefly when the user presses the home button;

most of them quickly move onto the Suspended state. Apps that want

to do any sort of background processing stay in this state until they’re

made Active again.

•	 Suspended – A Suspended app is frozen. This is what happens to

normal apps after their brief stint in the Background state. All the

memory the app was using while it was active is held just as it was.

If the user brings the app back to the Active state, it will pick up right

where it left off. On the other hand, if the system needs more memory

for whichever app is currently Active, any Suspended apps may be

terminated (and placed back into the Not Running state) and their

memory freed for other use.

•	 Inactive – An app enters the Inactive state only as a temporary rest

stop between two other states. The only way an app can stay Inactive

for any length of time is if the user is dealing with a system prompt

(such as those shown for an incoming call or SMS message) or if the

user has locked the screen. This state is basically a sort of limbo.

�Getting State-Change Notifications
To manage changes between these states, the AppDelegate.swift file contains methods

that its delegate can implement as follows:

•	 application(_:didFinishLaunchingWithOptions:) – Detects

when an app starts running

Chapter 5 Understanding the Application Life Cycle

91

•	 applicationWillResignActive() – Detects when the user returns

to the Home screen, which will push the app into the background

•	 applicationDidBecomeActive() – Detects when an app, formerly in

the background, reappears in the foreground once more

•	 applicationDidEnterBackground() – Detects when an app gets

sent into the background

•	 applicationWillEnterForeground() – Detects when an app is

about to be sent into the background

•	 applicationWillTerminate() – Detects when an app is about to

stop running

The applicationWillResignActive() and applicationDidBecomeActive() methods

can be useful when detecting interruptions such as someone using your app when

a phone call comes in and interrupts your app. This pair of methods brackets the

movement of an app from the Active state to the Inactive state, which makes them

good places to enable and disable any animations, in-app audio, or other items

that deal with the app’s presentation to the user. Because of the multiple situations

where applicationDidBecomeActive() is used, you may want to put some of your app

initialization code there instead of in application(_:didFinishLaunchingWithOptions:).

Note that you should not assume in applicationWillResignActive() that the application is

about to be sent to the background; it may just be a temporary change that ends up with

a move back to the Active state.

The two applicationDidEnterBackground() and applicationWillEnterForeground()

methods deal with an app that is definitely being sent to the background. The

applicationDidEnterBackground() method is where an app should free all

resources such as saving all user data, closing network connections, and so forth.

This is also the spot where you can request more time to run in the background

if you need it, as we’ll see shortly. If you spend too much time doing things in

applicationDidEnterBackground() – more than about 5 seconds – the system will decide

that your app is misbehaving and terminate it.

Chapter 5 Understanding the Application Life Cycle

92

You should implement applicationWillEnterForeground() to re-create

whatever was torn down in applicationDidEnterBackground(), such as

reloading user data, reestablishing network connections, and so on. Note

that when applicationDidEnterBackground() is called, you can safely assume

that applicationWillResignActive() has also been recently called. Likewise,

when applicationWillEnterForeground() gets called, you can assume that

applicationDidBecomeActive() will soon be called as well.

Finally, applicationWillTerminate(), which you’ll probably rarely use, if ever, is called

only if your application is already in the background and the system decides to skip

suspension for some reason and simply terminate the app.

Now that you have a basic theoretical understanding of the states an application

transitions between, let’s see how this works with a simple app that does nothing more

than write a message to Xcode’s console log each time one of these methods is called.

We’ll then manipulate the running app in a variety of ways, just as a user might, and see

which transitions occur. To get the most out of this example, you’ll need an iOS device.

If you don’t have one, you can use the Simulator and skip over the parts that require a

device.

To see how the different AppDelegate.swift methods work, follow these steps:

	 1.	 Create a new iOS Single View App and name it StateApp.

	 2.	 Click the AppDelegate.swift file in the Navigator pane.

	 3.	 Edit the AppDelegate.swift file and add a print(#function) line in

each method so the entire file looks like this:

import UIKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 �func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 print(#function)

 return true

 }

Chapter 5 Understanding the Application Life Cycle

93

 func applicationWillResignActive(_ application: UIApplication)

{

 �// Sent when the application is about to move from active

to inactive state. This can occur for certain types of

temporary interruptions (such as an incoming phone call or

SMS message) or when the user quits the application and it

begins the transition to the background state.

 �// Use this method to pause ongoing tasks, disable timers,

and invalidate graphics rendering callbacks. Games should

use this method to pause the game.

 print(#function)

 }

 �func applicationDidEnterBackground(_ application:

UIApplication) {

 �// Use this method to release shared resources, save user

data, invalidate timers, and store enough application

state information to restore your application to its

current state in case it is terminated later.

 �// If your application supports background execution, this

method is called instead of applicationWillTerminate: when

the user quits.

 print(#function)

 }

 �func applicationWillEnterForeground(_ application:

UIApplication) {

 �// Called as part of the transition from the background to

the active state; here you can undo many of the changes

made on entering the background.

 print(#function)

 }

Chapter 5 Understanding the Application Life Cycle

94

 func applicationDidBecomeActive(_ application: UIApplication) {

 �// Restart any tasks that were paused (or not yet started)

while the application was inactive. If the application was

previously in the background, optionally refresh the user

interface.

 print(#function)

 }

 func applicationWillTerminate(_ application: UIApplication) {

 �// Called when the application is about to terminate. Save

data if appropriate. See also applicationDidEnterBackground:.

 print(#function)

 }

}

The literal expression #function evaluates to the name of the

method in which it appears, and the print statement simply prints

this information in Xcode’s debug area. This allows us to track

which method has been called at any given time.

	 4.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears and displays a blank screen since we didn’t design

any type of user interface. Notice that the Xcode debug area

displays the following:

application(_:didFinishLaunchingWithOptions:)

applicationDidBecomeActive(_:)

This shows that the :didFinishLaunchingWithOptions

method runs first as soon as the app launches, followed by the

applicationDidBecomeActive method.

Chapter 5 Understanding the Application Life Cycle

95

	 5.	 Choose Hardware ➤ Home to emulate the user returning to the

Home screen. Notice the following message appears in Xcode’s

debug area:

applicationWillResignActive(_:)

applicationDidEnterBackground(_:)

This shows that when the app is no longer active, the

applicationWillResignActive method runs first, followed by the

applicationDidEnterBackground method. These two lines show

the app actually transitioning between two states: it first becomes

Inactive and then goes to Background. What you can’t see here is

that the app also switches to a third state: Suspended. Remember

that you do not get any notification that this has happened; it’s

completely outside your control.

	 6.	 Click the StateApp icon on the Home screen to relaunch it. Notice

that the Xcode debug area now displays the following:

applicationWillEnterForeground(_:)

applicationDidBecomeActive(_:)

This shows that the app was previously Suspended, is woken up to

Inactive, and then ends up Active again.

	 7.	 Press Command+Shift and press H twice in rapid succession. The

sideways-scrolling screen of apps appears as shown in Figure 5-1.

Chapter 5 Understanding the Application Life Cycle

96

	 8.	 Move the mouse pointer over the StateApp screen and drag up

until the StateApp screen disappears off the top of the Simulator

screen. Notice that the Xcode debug area displays the following:

applicationDidEnterBackground(_:)

applicationWillTerminate(_:)

Note D o not rely on the applicationWillTerminate() method
being called to save the state of your application – do this in the
applicationDidEnterBackground() method instead.

Figure 5-1.  The sideways-scrolling view of currently running apps

Chapter 5 Understanding the Application Life Cycle

97

By experimenting with the Simulator, you can see how the AppDelegate.swift file’s

various methods run at different times. If you have an iPhone, you can see what happens

when an app runs and gets interrupted by a phone call.

To see how an app handles an interruption like a phone call, follow these steps:

	 1.	 Connect an iPhone to your Macintosh through its USB cable.

	 2.	 Make sure the StateApp project is loaded in Xcode.

	 3.	 Click the Active Scheme menu to choose the iPhone as shown in

Figure 5-2.

Figure 5-2.  Clicking the Active Scheme menu lets you choose to run the StateApp
project on an iPhone instead of in the Simulator

	 4.	 Click the Run button or choose Product ➤ Run. The StateApp

appears on your iPhone. If you look in Xcode’s debug area, you’ll

see these two lines showing that the app launched:

application(_:didFinishLaunchingWithOptions:)

applicationDidBecomeActive(_:)

	 5.	 From another phone, call the iPhone currently running the

StateApp while connected to your Macintosh. Notice that the

following line appears in Xcode’s debug area:

applicationWillResignActive(_:)

This shows that the StateApp is no longer active since the iPhone

screen displays the phone call information.

Chapter 5 Understanding the Application Life Cycle

98

	 6.	 Stop the phone call from the other phone. Notice that the

StateApp screen appears again (a blank screen) and that the

Xcode debug area displays the following:

applicationDidBecomeActive(_:)

	 7.	 Click the Stop button or choose Product ➤ Stop in Xcode to stop

the StateApp on your iPhone.

�Using Execution State Changes
Based on what was just demonstrated, each state change serves different purposes:

�Active ➤ Inactive
Use applicationWillResignActive() to “pause” your app’s display. If your app is a game,

you probably already have the ability to pause the gameplay in some way. For other

kinds of apps, make sure no time-critical demands for user input are running because

your app won’t be getting any user input for a while.

�Inactive ➤ Background
Use applicationDidEnterBackground() to release any resources that don’t need to

be kept around when the app is tucked in the background (such as cached images or

other easily reloadable data) or that might not survive backgrounding anyway (such as

active network connections). Getting rid of excess memory usage here will make your

app’s eventual Suspended snapshot smaller, thereby decreasing the risk that your app

will be purged from RAM entirely. You should also use this opportunity to save any

application data that will help your users pick up where they left off the next time your

app is relaunched. If your app comes back to the Active state, normally this won’t matter;

however, in case it’s purged and must be relaunched, your users will appreciate starting

off in the same place.

When this transition is underway, the system won’t give your app an unlimited

amount of time to save any changes; it just gives you a few seconds. If your app takes

longer than that, then your app will be purged from memory and pushed into the Not

Running state.

Chapter 5 Understanding the Application Life Cycle

99

�Background ➤ Inactive
Use applicationWillEnterForeground() to undo anything you did when switching from

Inactive to Background. For example, here you can reestablish persistent network

connections.

�Inactive ➤ Active
Use applicationDidBecomeActive() to undo anything you did when switching from

Active to Inactive. Note that, if your app is a game, this probably does not mean dropping

out of pause straight to the game; you should let your users do that on their own.

Also keep in mind that this method and notification are used when an app is freshly

launched, so anything you do here must work in that context as well.

There is one special consideration for the Inactive ➤ Background transition. Not

only does it have the longest description in the previous list, but it’s also probably the

most code- and time-intensive transition in applications because of the amount of

bookkeeping you may want your app to do.

�Displaying the Launch Screen
Every iOS project has a launch screen, which is actually the first screen that appears

when the app first starts. After a few seconds, the launch screen disappears and the

initial view controller appears. The launch screen, sometimes called a splash screen,

appears first, which can give your initial view controller time to load. In addition, a

launch screen typically displays a flashy graphic image of some kind that represents

your app. By default, the launch screen is named LaunchScreen.storyboard, but you can

choose a different .storyboard file to represent the launch screen.

To define the .storyboard file you want to use as the launch screen, follow these steps:

	 1.	 Click the project name at the top of the Navigator pane.

	 2.	 Click the Launch Screen File popup menu and choose the

.storyboard file you want to use for your launch screen as shown

in Figure 5-3.

Chapter 5 Understanding the Application Life Cycle

100

To see how launch screens work, follow these steps:

	 1.	 Create a new iOS Single View App and name it LaunchScreenApp.

	 2.	 Click the LaunchScreen.storyboard file in the Navigator pane.

A blank view controller appears.

	 3.	 Click View Controller Scene ➤ View Controller ➤ View in the

Document Outline.

	 4.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 5.	 Click the Background popup menu and choose a color such as

green or blue. This will make it easy to recognize when the launch

screen appears and then disappears.

	 6.	 Click the Library icon to open the Object Library window.

Figure 5-3.  Defining the Launch Screen File

Chapter 5 Understanding the Application Life Cycle

101

	 7.	 Drag and drop a label anywhere on the view.

	 8.	 Double-click the label, type Launch Screen, then press Enter.

	 9.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears. Notice that it displays the colored launch screen

for a few seconds before displaying the blank screen of the initial

view controller defined in the Main.storyboard file.

	 10.	 Choose Hardware ➤ Home to return to the Home screen.

	 11.	 Double-click the LaunchScreenApp icon. Notice that the launch

screen does not appear.

	 12.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

The first time an app launches, it displays its launch screen for a few seconds before

displaying the initial view controller in the Main.storyboard file. From now on, the

launch screen will be hidden until the app completely terminates and restarts.

�Using the Notification Center
The AppDelegate.swift file contains methods that can track different states of an app

such as when an app starts, goes into the background, and becomes active again.

However, you may want to track other states of your app such as when a user makes a

certain choice by clicking different user interface objects. In that case, you can use the

notification center.

To use the notification center, you need to follow several steps:

•	 Define a unique name for each action you want to detect.

•	 Define one or more notification center observers to receive

notifications when certain actions occur.

•	 Write functions to run when a notification center observer receives a

notification.

•	 Write code to send a notification when a certain action occurs.

Think of the notification center as a broadcasting station that allows certain parts of

an app to listen and take action when certain actions occur.

Chapter 5 Understanding the Application Life Cycle

102

To see how to use the notification center, follow these steps:

	 1.	 Create a new iOS Single View App and name it

NotificationCenterApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon to open the Object Library window.

	 4.	 Drag and drop a label onto the view and resize its width to make it

stretch from the left edge to the right edge.

	 5.	 Drag and drop a button onto the view.

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the label and the button.

	 7.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the ViewController.swift file.

	 8.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the “class ViewController” line in the

ViewController.swift file.

	 9.	 Release the Control key and the left mouse button. A popup

window appears.

	 10.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var myLabel: UILabel!

	 11.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 12.	 Click the ViewController.swift file in the Navigator pane.

Chapter 5 Understanding the Application Life Cycle

103

	 13.	 Add the following underneath the “import UIKit” line:

import UIKit

extension Notification.Name {

 static let firstSegment = Notification.Name("first")

 static let secondSegment = Notification.Name("second")

 static let buttonPressed = Notification.Name("button")

}

This extension simply defines arbitrary names that will be used

to identify our different notification center observers that we’ll

define next.

	 14.	 Add the following underneath the IBOutlet line:

@objc func firstSegmentTapped(notification: Notification) {

 myLabel.text = "First segment of segmented control tapped"

}

@objc func secondSegmentTapped(notification: Notification) {

 �myLabel.text = "Second segment of segmented control tapped"

}

@objc func buttonTapped(notification: Notification) {

 myLabel.text = "Button tapped"

}

	 15.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 �NotificationCenter.default.addObserver(self, selector:

#selector(firstSegmentTapped(notification:)), name:

.firstSegment, object: nil)

Chapter 5 Understanding the Application Life Cycle

104

 �NotificationCenter.default.addObserver(self, selector:

#selector(secondSegmentTapped(notification:)), name:

.secondSegment, object: nil)

 �NotificationCenter.default.addObserver(self, selector:

#selector(buttonTapped(notification:)), name: .buttonPressed,

object: nil)

 }

The entire ViewController.swift file should look like this:

import UIKit

extension Notification.Name {

 static let firstSegment = Notification.Name("first")

 static let secondSegment = Notification.Name("second")

 static let buttonPressed = Notification.Name("button")

}

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 @objc func firstSegmentTapped(notification: Notification) {

 myLabel.text = "First segment of segmented control tapped"

 }

 @objc func secondSegmentTapped(notification: Notification) {

 myLabel.text = "Second segment of segmented control tapped"

 }

 @objc func buttonTapped(notification: Notification) {

 myLabel.text = "Button tapped"

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 �NotificationCenter.default.addObserver(self, selector:

#selector(firstSegmentTapped(notification:)), name:

.firstSegment, object: nil)

Chapter 5 Understanding the Application Life Cycle

105

 �NotificationCenter.default.addObserver(self, selector:

#selector(secondSegmentTapped(notification:)), name:

.secondSegment, object: nil)

 �NotificationCenter.default.addObserver(self, selector:

#selector(buttonTapped(notification:)), name:

.buttonPressed, object: nil)

 }

}

	 16.	 Click the Main.storyboard file in the Navigator pane.

	 17.	 Click the Library icon to open the Object Library window.

	 18.	 Drag and drop a View Controller into the storyboard as shown in

Figure 5-4.

Figure 5-4.  Adding a second view controller to a storyboard

Chapter 5 Understanding the Application Life Cycle

106

	 19.	 Move the mouse pointer over the button on the first view

controller, hold down the Control key, and Ctrl-drag onto the

second view controller as shown in Figure 5-5.

Figure 5-5.  Ctrl-dragging from the button to the second view controller

	 20.	 Release the Control key and the left mouse button. A popup menu

appears as shown in Figure 5-6.

Chapter 5 Understanding the Application Life Cycle

107

	 21.	 Choose Show. This creates a segue that lets the button display the

second view controller. Xcode displays a segue arrow connecting

the two view controllers.

	 22.	 Click the Library icon to open the Object Library window.

	 23.	 Drag and drop a segmented control and a button anywhere on the

second view controller.

	 24.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to the segmented control and the button.

	 25.	 Choose File ➤ New ➤ File. A template dialog appears.

	 26.	 Click Cocoa Touch Class in the iOS category and click the Next

button. Another dialog appears.

	 27.	 Click in the Name text field and type SecondViewController.

	 28.	 Make sure the Subclass of popup menu displays UIViewController.

	 29.	 Click the Next button and then click the Create button. Xcode

displays SecondViewController.swift in the Navigator pane.

	 30.	 Click the Main.storyboard file in the Navigator pane.

	 31.	 Click the View Controller icon that appears on the second view

controller (the one with the button and segmented control).

	 32.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

Figure 5-6.  Choosing a segue from the button to the second view controller

Chapter 5 Understanding the Application Life Cycle

108

	 33.	 Click the Class popup menu and choose SecondViewController

as shown in Figure 5-7. Notice that Second View Controller now

appears at the top of the second view controller.

Figure 5-7.  Connecting the SecondViewController.swift file to the second view
controller

	 34.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the SecondViewController.swift file.

	 35.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

SecondViewController.swift file.

	 36.	 Release the Control key and the left mouse button. A popup

window appears.

	 37.	 Make sure the Connection popup menu displays Action, then

click in the Name text field and type tapButton.

	 38.	 Click the Type popup menu and choose UIButton, then click the

Connect button. Xcode creates a tapButton IBAction method.

	 39.	 Move the mouse pointer over the segmented control, hold down

the Control key, and Ctrl-drag above the last curly bracket at the

bottom of the SecondViewController.swift file.

Chapter 5 Understanding the Application Life Cycle

109

	 40.	 Release the Control key and the left mouse button. A popup

window appears.

	 41.	 Make sure the Connection popup menu displays Action, then

click in the Name text field and type tapSegmentedControl.

	 42.	 Click the Type popup menu and choose UISegmentedControl,

then click the Connect button. Xcode creates a

tapSegmentedControl IBAction method.

	 43.	 Click the segmented control to select it. Notice that the first

segment appears highlighted.

	 44.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 45.	 Clear the “Selected” check box as shown in Figure 5-8.

Figure 5-8.  Clearing the Selected check box

	 46.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 47.	 Click the SecondViewController.swift file in the Navigator pane.

Chapter 5 Understanding the Application Life Cycle

110

	 48.	 Edit the tapButton IBAction method as follows:

@IBAction func tapButton(_ sender: UIButton) {

 �NotificationCenter.default.post(name: .buttonPressed,

object: nil)

 dismiss(animated: true, completion: nil)

}

This sends a notification that the user tapped the button on the

second view controller.

	 49.	 Edit the tapSegmentedControl IBAction method as follows:

�@IBAction func tapSegmentedControl(_ sender: UISegmentedControl) {

 switch sender.selectedSegmentIndex {

 case 0:

 �NotificationCenter.default.post(name: .firstSegment,

object: nil)

 case 1:

 �NotificationCenter.default.post(name: .secondSegment,

object: nil)

 default:

 print ("Default")

 }

 dismiss(animated: true, completion: nil)

}

This sends a notification that the user tapped the segmented

control and identifies which segment the user tapped, the first one

or the second one.

	 50.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, displaying the button and label.

	 51.	 Click the button. The second view controller appears.

Chapter 5 Understanding the Application Life Cycle

111

	 52.	 Click the button or the segmented control. The first view controller

appears and displays a message, identifying whether you tapped

the button or segmented control.

	 53.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Summary
As you can see, an app often goes through multiple states just to load and stop. If the

user returns to the Home screen or gets interrupted by another process such as a phone

call, that can affect an app’s state too. To help you track and respond to different states,

you can use various methods stored in the AppDelegate.swift file, which monitors and

responds to different states of an app.

When an app first launches, it may need to retrieve various setting information or

data that the user was working on the last time your app ran. When the user returns to

the Home screen or gets interrupted, an app may need to temporarily store data that it

will need again once the user returns back to the app. When an app finally terminates,

then the app may need to store data one last time to prepare for the next time the user

launches the app.

The first time an app starts, it displays a launch screen, which is any .storyboard file

you wish to use. After an app is running, it won’t display its launch screen again until the

user terminates the app and starts it up again. By using launch screens, you can display a

distinctive visual image on the screen while loading the rest of your app.

If you want to track the specific actions on the user interface, you can use the

notification center. This allows different parts of your project to receive notifications and

respond to those notifications. Now you can track not only the different stages an app

goes into but also what happens on the user interface.

Chapter 5 Understanding the Application Life Cycle

113
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_6

CHAPTER 6

Understanding Data
Persistence
All but the simplest apps need to store data. The Stocks app lets users track their favorite

stocks, so it needs to store the list of stocks to follow that the user chose. Each time

the user launches the Stocks app again, it displays the list of stocks the user inputted

previously. If the user adds or deletes stocks from this list, the Stocks app needs to store

this updated list and retrieve it again the next time the user loads the Stocks app.

Other types of apps may have various settings that allow users to customize an app

such as defining its background color or sounds to play when certain events occur such

as one sound to represent a text message received and another sound to represent a

voicemail someone left you.

Storing and retrieving data is known as data persistence. The three common ways to

store and retrieve data in an iOS app include

•	 UserDefaults

•	 Reading and writing files

•	 Core Data

Each method offers different advantages and disadvantages, so it depends on what

type of data you want to store and its purpose that can define which storage method your

app should use.

UserDefaults is generally used to store small amounts of data such as user

preferences for a particular app. This method uses a dictionary data structure and saves

data in a .plist file, similar to the Info.plist file that every Xcode project includes. It’s the

simplest method to save common types of data such as strings, numbers, dates, and data

structures such as dictionaries or arrays and is best suited for small amounts of data.

114

Reading and writing data to a file can be useful to store longer amounts of data such

as several lines of text. However, reading and writing to a file can be slow if you have lots

of data, which requires code to search through the entire file to find specific data.

Core Data lets you store different types of data in groups called entities, which are

similar to tables or records in a database. If you need to store large amounts of diverse

data, use Core Data over the other two options for storing data.

�Storing Preferences in UserDefaults
UserDefaults is meant to store small amounts of data such as a number, Boolean value,

or a string. This makes UserDefaults best for storing an app’s settings such as its default

background color. Using UserDefaults involves a two-step process:

•	 Store data in UserDefaults.

•	 Retrieve data from UserDefaults.

To store data using UserDefaults, you need to define a key and the data you want

to store in this format where “dataToSave” represents an actual value and “keyString”

represents a unique string:

UserDefaults.standard.set(dataToSave, forKey: "keyString")

The set command saves the key and its associated data. To retrieve previously saved

data, you need to know the key value and the type of data stored such as an integer,

Boolean, or double data type. Knowing the data type you want to retrieve, you can use

one of the following:

•	 integer(forKey: “keyString”) – Returns an integer if the key exists, or 0

if not

•	 bool(forKey: “keyString”) – Returns a Boolean if the key exists, or

false if not

•	 float(forKey: “keyString”) – Returns a float value if the key exists, or

0.0 if not

•	 string(forKey: “keyString”) – Returns a string value if the key exists, or

nil if not

Chapter 6 Understanding Data Persistence

115

•	 double(forKey: “keyString”) – Returns a double value if the key exists,

or 0.0 if not

•	 object(forKey: “keyString”) – Returns AnyObject? so you’ll need to

conditionally typecast it to a specific data type, or nil if not

•	 url(forKey: “keyString”) – Returns a URL if the key exists, or nil if not

To see how to save data as UserDefaults, follow these steps:

	 1.	 Create a new iOS Single View App and name it UserDefaultsApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon to open the Object Library window.

	 4.	 Drag and drop a switch, a text field, and a slider. Then drag and

drop three buttons on the view as well.

	 5.	 Double-click the left button, type Save, and press Enter.

	 6.	 Double-click the middle button, type Clear, and press Enter.

	 7.	 Double-click the right button, type Load, and press Enter. The

user interface looks something like Figure 6-1.

Figure 6-1.  Designing a user interface with a switch, text field, a slider, and three
buttons

Chapter 6 Understanding Data Persistence

116

	 8.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the ViewController.swift file.

	 9.	 Move the mouse pointer over the switch, hold down the Control

key, and Ctrl-drag under the “class ViewController” line.

	 10.	 Release the Control button and the left mouse button. A popup

window appears.

	 11.	 Click in the Name text field, type mySwitch, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var mySwitch: UISwitch!

	 12.	 Move the mouse pointer over the slider, hold down the Control

key, and Ctrl-drag under the “class ViewController” line.

	 13.	 Release the Control button and the left mouse button. A popup

window appears.

	 14.	 Click in the Name text field, type mySlider, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var mySlider: UISlider!

	 15.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the “class ViewController” line.

	 16.	 Release the Control button and the left mouse button. A popup

window appears.

	 17.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 18.	 Move the mouse pointer over the Save button, hold down the

Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

Chapter 6 Understanding Data Persistence

117

	 19.	 Release the Control button and the left mouse button. A popup

window appears.

	 20.	 Click in the Name text field, type saveData, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a saveData IBAction method.

	 21.	 Move the mouse pointer over the Clear button, hold down the

Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 22.	 Release the Control button and the left mouse button. A popup

window appears.

	 23.	 Click in the Name text field, type clearData, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a clearData IBAction method.

	 24.	 Move the mouse pointer over the Load button, hold down the

Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 25.	 Release the Control button and the left mouse button. A popup

window appears.

	 26.	 Click in the Name text field, type loadData, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a loadData IBAction method.

	 27.	 Edit the saveData IBAction method as follows:

@IBAction func saveData(_ sender: UIButton) {

 �UserDefaults.standard.set(myTextField.text, forKey: "Text")

 UserDefaults.standard.set(mySwitch.isOn, forKey: "Switch")

 �UserDefaults.standard.set(mySlider.value, forKey: "Slider")

}

Chapter 6 Understanding Data Persistence

118

	 28.	 Edit the clearData IBAction method as follows:

@IBAction func clearData(_ sender: UIButton) {

 mySwitch.isOn = true

 mySlider.value = 0.5

 myTextField.text = ""

}

	 29.	 Edit the loadData IBAction method as follows:

@IBAction func loadData(_ sender: UIButton) {

 �mySwitch.isOn = UserDefaults.standard.bool(forKey: "Switch")

 �mySlider.value = UserDefaults.standard.float(forKey: "Slider")

 �myTextField.text = UserDefaults.standard.string(forKey:

"Text")

 }

Note that mySwitch.isOn retrieves Boolean data from

UserDefaults, mySlider.value retrieves a floating point value

(decimal number), and myTextField.text retrieves a string.

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var mySwitch: UISwitch!

 @IBOutlet var mySlider: UISlider!

 @IBOutlet var myTextField: UITextField!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

Chapter 6 Understanding Data Persistence

119

 @IBAction func saveData(_ sender: UIButton) {

 �UserDefaults.standard.set(myTextField.text, forKey:

"Text")

 UserDefaults.standard.set(mySwitch.isOn, forKey: "Switch")

 �UserDefaults.standard.set(mySlider.value, forKey:

"Slider")

 }

 @IBAction func clearData(_ sender: UIButton) {

 mySwitch.isOn = true

 mySlider.value = 0.5

 myTextField.text = ""

 }

 @IBAction func loadData(_ sender: UIButton) {

 �mySwitch.isOn = UserDefaults.standard.bool(forKey:

"Switch")

 �mySlider.value = UserDefaults.standard.float(forKey:

"Slider")

 �myTextField.text = UserDefaults.standard.string

(forKey: "Text")

 }

}

	 30.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears and displays the user interface.

	 31.	 Click the switch to turn it off (the switch appears on the left).

	 32.	 Click in the text field and type any text you wish such as Hello,
there!

	 33.	 Drag the slider to the far left.

	 34.	 Click the Save button. This saves the settings in UserDefaults.

	 35.	 Click the Clear button. Notice that the switch moves back to its

default position (the switch on the right), the text field appears

empty, and the slider moves back to its default position (the slider

in the middle).

Chapter 6 Understanding Data Persistence

120

	 36.	 Click the Load button. Notice that this loads the data previously

saved in UserDefaults, so the switch appears to the left, the text

field displays the text you typed, and the slider moves back to the

far left.

	 37.	 Choose Simulator ➤ Quit Simulator.

�Storing Preferences in UserDefaults
in the AppDelegate File
An app can always save data in UserDefaults anywhere and load them back again in

a viewDidLoad method. In the previous example, we could simply load data from

UserDefaults automatically like this:

 override func viewDidLoad() {

 super.viewDidLoad()

 mySwitch.isOn = UserDefaults.standard.bool(forKey: "Switch")

 mySlider.value = UserDefaults.standard.float(forKey: "Slider")

 myTextField.text = UserDefaults.standard.string(forKey: "Text")

 }

Rather than save and store data in separate .swift files, it’s generally better to do all

the saving and retrieving of UserDefaults data in the AppDelegate.swift file, which can

save data before an app terminates and load data back again when the app starts up

again.

The AppDelegate.swift file needs to store and retrieve UserDefaults data. That means

the AppDelegate.swift file needs to retrieve data from other .swift files (so it can save it)

and pass that data back to another .swift file (so that view controller can use the saved

data).

That means we need a way for the AppDelegate.swift file to share data with the

ViewController.swift file. One way to do this is through the Notification Center (see

Chapter 5). Another way is through defining properties in both the AppDelegate.swift

file and the ViewController.swift file and sending or retrieving data to and from those

properties.

Chapter 6 Understanding Data Persistence

121

To see how to save and load UserDefaults data in the AppDelegate.swift file, follow

these steps:

	 1.	 Create a new iOS Single View App and name it AppDelegateApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and then drag and drop a slider, text field,

switch, and a button onto the view.

	 4.	 Double-click the button, type Clear, and press Enter. The user

interface should look similar to Figure 6-2.

Figure 6-2.  Creating a user interface with a text field, switch, slider, and button

	 5.	 Move the mouse pointer over the switch, hold down the Control

key, and Ctrl-drag under the “class ViewController” line.

	 6.	 Release the Control button and the left mouse button. A popup

window appears.

	 7.	 Click in the Name text field, type mySwitch, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var mySwitch: UISwitch!

	 8.	 Move the mouse pointer over the slider, hold down the Control

key, and Ctrl-drag under the “class ViewController” line.

	 9.	 Release the Control button and the left mouse button. A popup

window appears.

Chapter 6 Understanding Data Persistence

122

	 10.	 Click in the Name text field, type mySlider, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var mySlider: UISlider!

	 11.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the “class ViewController” line.

	 12.	 Release the Control button and the left mouse button. A popup

window appears.

	 13.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 14.	 Move the mouse pointer over the Clear button, hold down the

Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 15.	 Release the Control button and the left mouse button. A popup

window appears.

	 16.	 Click in the Name text field, type clearData, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a clearData IBAction method.

	 17.	 Move the mouse pointer over the switch, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 18.	 Release the Control button and the left mouse button. A popup

window appears.

	 19.	 Click in the Name text field, type changeSwitch, click the Type

popup menu and choose UISwitch, and click the Connect button.

Xcode creates a changeSwitch IBAction method.

	 20.	 Move the mouse pointer over the slider, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

Chapter 6 Understanding Data Persistence

123

	 21.	 Release the Control button and the left mouse button. A popup

window appears.

	 22.	 Click in the Name text field, type changeSlider, click the Type

popup menu and choose UISlider, and click the Connect button.

Xcode creates a changeSlider IBAction method.

	 23.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 24.	 Release the Control button and the left mouse button. A popup

window appears.

	 25.	 Click in the Name text field, type changeTextField, and click the

Type popup menu and choose UITextField.

	 26.	 Click the Event popup menu and choose Editing Changed and

then click the Connect button. Xcode creates a changeTextField

IBAction method.

	 27.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 28.	 Click the AppDelegate.swift file in the Navigator pane.

	 29.	 Add the following under the var : UIWindow? Line:

var sliderData : Float = 0.5

var textFieldData = ""

var switchData = true

static func shared() -> AppDelegate {

 return UIApplication.shared.delegate as! AppDelegate

}

The first three lines create three properties that will later be

accessed by ViewController.swift file to store data in. The shared()

function allows another .swift file to access the AppDelegate.swift

file’s properties.

Chapter 6 Understanding Data Persistence

124

	 30.	 Modify the didFinishLaunchingWithOptions method as follows:

�func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 �// Override point for customization after application launch.

 switchData = UserDefaults.standard.bool(forKey: "Switch")

 sliderData = UserDefaults.standard.float(forKey: "Slider")

 �textFieldData = UserDefaults.standard.string(forKey: "Text")!

 return true

 }

This method runs when the app starts up and retrieves any

UserDefaults data. Then it stores this data in the AppDelegate.

swift file’s properties.

	 31.	 Modify the applicationDidEnterBackground method as follows:

�func applicationDidEnterBackground(_ application: UIApplication) {

 �// Use this method to release shared resources, save user

data, invalidate timers, and store enough application state

information to restore your application to its current state

in case it is terminated later.

 �// If your application supports background execution, this

method is called instead of applicationWillTerminate: when the

user quits.

 UserDefaults.standard.set(textFieldData, forKey: "Text")

 UserDefaults.standard.set(switchData, forKey: "Switch")

 UserDefaults.standard.set(sliderData, forKey: "Slider")

 }

This method runs right before the app leaves the active state and

goes into the background, which occurs when the user switches

to another app. This saves all data in UserDefaults. The entire

AppDelegate.swift file should look like this:

Chapter 6 Understanding Data Persistence

125

import UIKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 var sliderData : Float = 0.5

 var textFieldData = ""

 var switchData = true

 static func shared() -> AppDelegate {

 return UIApplication.shared.delegate as! AppDelegate

 }

 �func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 �// Override point for customization after application

launch.

 switchData = UserDefaults.standard.bool(forKey: "Switch")

 sliderData = UserDefaults.standard.float(forKey: "Slider")

 textFieldData = UserDefaults.standard.string(forKey: "Text")!

 return true

 }

 �func applicationWillResignActive(_ application: UIApplication)

{

 �// Sent when the application is about to move from active

to inactive state. This can occur for certain types of

temporary interruptions (such as an incoming phone call or

SMS message) or when the user quits the application and it

begins the transition to the background state.

 �// Use this method to pause ongoing tasks, disable timers,

and invalidate graphics rendering callbacks. Games should

use this method to pause the game.

 }

Chapter 6 Understanding Data Persistence

126

 �func applicationDidEnterBackground(_ application:

UIApplication) {

 �// Use this method to release shared resources, save user

data, invalidate timers, and store enough application

state information to restore your application to its

current state in case it is terminated later.

 �// If your application supports background execution, this

method is called instead of applicationWillTerminate: when

the user quits.

 UserDefaults.standard.set(textFieldData, forKey: "Text")

 UserDefaults.standard.set(switchData, forKey: "Switch")

 UserDefaults.standard.set(sliderData, forKey: "Slider")

 }

 �func applicationWillEnterForeground(_ application:

UIApplication) {

 �// Called as part of the transition from the background to

the active state; here you can undo many of the changes

made on entering the background.

 }

 func applicationDidBecomeActive(_ application: UIApplication) {

 �// Restart any tasks that were paused (or not yet started)

while the application was inactive. If the application was

previously in the background, optionally refresh the user

interface.

 }

 func applicationWillTerminate(_ application: UIApplication) {

 �// Called when the application is about to terminate. Save

data if appropriate. See also applicationDidEnterBackground:.

 }

}

Chapter 6 Understanding Data Persistence

127

	 32.	 Click the ViewController.swift file in the Navigator pane.

	 33.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 mySlider.value = AppDelegate.shared().sliderData

 mySwitch.isOn = AppDelegate.shared().switchData

 myTextField.text = AppDelegate.shared().textFieldData

}

This retrieves the data stored in the AppDelegate.swift file’s

properties, which contain the UserDefaults data loaded in from

the didFinishLaunchingWithOptions method.

	 34.	 Edit the changeTextField IBAction method as follows:

@IBAction func changeTextField(_ sender: UITextField) {

 AppDelegate.shared().textFieldData = sender.text ?? ""

}

As the user edits the contents of the text field, this IBAction

method stores the text field contents in the AppDelegate.swift file’s

textFieldData property.

	 35.	 Edit the changeSlider IBAction method as follows:

@IBAction func changeSlider(_ sender: UISlider) {

 AppDelegate.shared().sliderData = sender.value

}

When the user changes the slider, the slider’s value gets stored in

the AppDelegate.swift file’s sliderData property.

	 36.	 Edit the changeSwitch IBAction method as follows:

@IBAction func changeSwitch(_ sender: UISwitch) {

 AppDelegate.shared().switchData = sender.isOn

}

Chapter 6 Understanding Data Persistence

128

When the user changes the switch, the switch’s isOn property

(true or false) gets stored in the AppDelegate.swift file’s

switchData property.

	 37.	 Edit the clearData IBAction method as follows:

@IBAction func clearData(_ sender: UIButton) {

 mySwitch.isOn = true

 mySlider.value = 0.5

 myTextField.text = ""

}

This simply sets the switch back to true and the slider to 0.5 and

clears the text field. The entire ViewController.swift file should

look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var mySwitch: UISwitch!

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var mySlider: UISlider!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 mySlider.value = AppDelegate.shared().sliderData

 mySwitch.isOn = AppDelegate.shared().switchData

 myTextField.text = AppDelegate.shared().textFieldData

 }

 @IBAction func changeTextField(_ sender: UITextField) {

 AppDelegate.shared().textFieldData = sender.text ?? ""

 }

 @IBAction func changeSlider(_ sender: UISlider) {

 AppDelegate.shared().sliderData = sender.value

 }

Chapter 6 Understanding Data Persistence

129

 @IBAction func changeSwitch(_ sender: UISwitch) {

 AppDelegate.shared().switchData = sender.isOn

 }

 @IBAction func clearData(_ sender: UIButton) {

 mySwitch.isOn = true

 mySlider.value = 0.5

 myTextField.text = ""

 }

}

	 38.	 Click the Run button, or choose Product ➤ Run. The Simulator

screen appears.

	 39.	 Click the switch so it appears to the left.

	 40.	 Click in the text field and type some text such as Hello, there!

	 41.	 Drag the slider all the way to the left.

	 42.	 Click the Clear button. Notice that the switch moves back to the

right, the text field clears, and the slider moves back to the middle.

	 43.	 Press Command+Shift and press H twice in rapid succession to

display the app screen shrunken as shown in Figure 6-3.

Chapter 6 Understanding Data Persistence

130

	 44.	 Move the mouse pointer over the app screen and drag up to slide

it out of sight. This terminates the app.

	 45.	 Double-click the AppDelegateApp icon on the Home screen to

load the app again. This will load the UserDefaults data. When the

app appears again, notice that the switch is on the left, the slider is

to the left, and the text field displays the data you typed earlier.

	 46.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Figure 6-3.  Terminating the app in the Simulator

Chapter 6 Understanding Data Persistence

131

�Reading and Writing to Files
On ordinary computers like the Macintosh, it’s common for a program to read data from

a file and write data back to a file. On an iOS device, an iOS app can do that too. Writing

data to a file offers another way an app can save data.

Although iOS shields users from the folder hierarchy of the operating system, it still

exists. To write a file, we first need to use the FileManager object like this:

let fm = FileManager.default

Next, we need to define a location for the file, which is the document directory in the

home folder:

let urls = fm.urls(for: .documentDirectory, in: .userDomainMask)

Finally, we need to create a file name (such as “file.txt”) to store data like this:

let url = urls.last?.appendingPathComponent("file.txt")

Once we’ve stored text in a file, we can retrieve it by using the FileManager again and

look for the file in the document directory in the home folder. To see how to write data to

a file and then read it back again, follow these steps:

	 1.	 Create a new iOS Single View App and name it ReadWriteApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and then drag and drop two buttons and

two text views onto the view. Place one text view at the top of the

screen and the second text view near the middle of the screen. Put

the two buttons in between the two text views.

	 4.	 Double-click one button, type Write File, and press Enter.

	 5.	 Double-click the second button, type Read File, and press Enter.

The user interface should look similar to Figure 6-4.

Chapter 6 Understanding Data Persistence

132

	 6.	 Move the mouse pointer over the top text view, hold down the

Control key, and Ctrl-drag below the class ViewController line in

the ViewController.swift file.

	 7.	 Release the Control button and the left mouse button. A popup

window appears.

	 8.	 Click in the Name text field, type createText, and click the

Connect button. Xcode creates a createText IBOutlet as follows:

@IBOutlet var createText: UITextView!

	 9.	 Move the mouse pointer over the bottom text view, hold down the

Control key, and Ctrl-drag below the class ViewController line in

the ViewController.swift file.

	 10.	 Release the Control button and the left mouse button. A popup

window appears.

Figure 6-4.  Creating a user interface with two text views and two buttons

Chapter 6 Understanding Data Persistence

133

	 11.	 Click in the Name text field, type displayText, and click the

Connect button. Xcode creates a createText IBOutlet as follows:

@IBOutlet var displayText: UITextView!

	 12.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 createText.text = "Type your text here"

 displayText.text = ""

}

	 13.	 Move the mouse pointer over the Write File button, hold down

the Control key, and Ctrl-drag above the last curly bracket in the

bottom of the ViewController.swift file.

	 14.	 Release the Control button and the left mouse button. A popup

window appears.

	 15.	 Click in the Name text field, type writeFile, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a writeFile IBAction method.

	 16.	 Move the mouse pointer over the Read File button, hold down

the Control key, and Ctrl-drag above the last curly bracket in the

bottom of the ViewController.swift file.

	 17.	 Release the Control button and the left mouse button. A popup

window appears.

	 18.	 Click in the Name text field, type readFile, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a readFile IBAction method.

	 19.	 Edit the writeFile IBAction method as follows:

@IBAction func writeFile(_ sender: UIButton) {

 let fm = FileManager.default

 �let urls = fm.urls(for: .documentDirectory, in:

.userDomainMask)

Chapter 6 Understanding Data Persistence

134

 let url = urls.last?.appendingPathComponent("file.txt")

 do {

 �try createText.text.write(to: url!, atomically: true,

encoding: String.Encoding.utf8)

 } catch {

 print("File writing error")

 }

}

	 20.	 Edit the readFile IBAction method as follows:

@IBAction func readFile(_ sender: UIButton) {

 let fm = FileManager.default

 �let urls = fm.urls(for: .documentDirectory, in:

.userDomainMask)

 let url = urls.last?.appendingPathComponent("file.txt")

 do {

 �let fileContent = try String(contentsOf: url!, encoding:

String.Encoding.utf8)

 displayText.text = fileContent

 } catch {

 print("File reading error")

 }

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var createText: UITextView!

 @IBOutlet var displayText: UITextView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 createText.text = "Type your text here"

 displayText.text = ""

Chapter 6 Understanding Data Persistence

135

 }

 @IBAction func writeFile(_ sender: UIButton) {

 let fm = FileManager.default

 �let urls = fm.urls(for: .documentDirectory, in:

.userDomainMask)

 let url = urls.last?.appendingPathComponent("file.txt")

 do {

 �try createText.text.write(to: url!, atomically: true,

encoding: String.Encoding.utf8)

 } catch {

 print("File writing error")

 }

 }

 @IBAction func readFile(_ sender: UIButton) {

 let fm = FileManager.default

 �let urls = fm.urls(for: .documentDirectory, in:

.userDomainMask)

 let url = urls.last?.appendingPathComponent("file.txt")

 do {

 �let fileContent = try String(contentsOf: url!,

encoding: String.Encoding.utf8)

 displayText.text = fileContent

 } catch {

 print("File reading error")

 }

 }

}

	 21.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, displaying your two buttons and the top text view

that displays the text “Type your text here”.

	 22.	 Edit the text in the top text view to contain any text you wish to

write.

	 23.	 Click the Write File button. This saves the text in a file.

Chapter 6 Understanding Data Persistence

136

	 24.	 Click the Read File button. Whatever text you saved in the file now

appears in the bottom text view.

	 25.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Using Core Data
If you only need to store small amounts of data, you can store data in UserDefaults. If

you need to store larger amounts of data that are unstructured, you can store them in a

file. However, if you want to store large amounts of structured data, then it’s better to use

Core Data.

Core Data is a framework to help you manage data in an app. Core Data lets you

define the type of data you want to save and the relationships between these different

chunks of data. Then Core Data helps you manipulate this data and their relationships

without worrying about the actual details of storing and retrieving the data or learning

cryptic SQL database commands.

Core Data stores data using entities and attributes. An attribute defines a single

chunk of data to store such as a name, address, age, gender, e-mail address, and phone

number. An entity represents all of these attributes used to define a single chunk of

related data such as a person as shown in Figure 6-5. Think of a Core Data entity like a

database record or table and a Core Data attribute like a database field.

Chapter 6 Understanding Data Persistence

137

The basic steps to using Core Data involve

•	 Creating entities and defining attributes in the Xcode data model

editor

•	 Writing Swift code to manipulate data

�Creating a Data Model File
A data model is a Core Data file that lets you define entities and attributes where an

entity represents a single object such as a person and attributes represent details such as

a name, phone number, and e-mail address. You can manually add a data model file to

any project or let Xcode add a data model file when you create a new project.

To add a Core Data file manually to a project, follow these steps:

	 1.	 Choose File ➤ New ➤ File. A template dialog appears.

	 2.	 Click the iOS category.

	 3.	 Scroll down and click the Data Model under the Core Data

category as shown in Figure 6-6.

	 4.	 Click the Next button. A dialog appears, letting you choose a name

that ends with the .xcdatamodeld file extension.

Figure 6-5.  Core Data stores data in attributes, grouped together to represent a
single entity

Chapter 6 Understanding Data Persistence

138

	 5.	 Choose a name for your Core Data file and click the Create button.

Xcode displays your .xcdatamodeld Core Data file in the Navigator

pane.

If you know ahead of time that you want to use Core Data, it’s easier to create a Core

Data file when you create a new project. This lets Xcode add the necessary Swift code to

access Core Data.

To create a new project that includes a Core Data file, follow these steps:

	 1.	 Choose File ➤ New ➤ Project. A template dialog appears.

	 2.	 Click the iOS category and click the Single View App. Then click

the Next button. Another dialog appears.

	 3.	 Click in the Product Name text field and type CoreDataApp.

(When creating your own projects, choose any name you wish.)

	 4.	 Make sure the Use Core Data check box is selected as shown in

Figure 6-7.

	 5.	 Click the Next button and then click the Create button.

Figure 6-6.  Creating a Core Data data model file

Chapter 6 Understanding Data Persistence

139

	 6.	 Click the AppDelegate.swift file in the Navigator pane. When you

create a new project using Core Data, Xcode adds the following

code at the end of the AppDelegate.swift file:

lazy var persistentContainer: NSPersistentContainer = {

 /*

 �The persistent container for the application. This

implementation creates and returns a container, having

loaded the store for the application to it. This property is

optional since there are legitimate error conditions that

could cause the creation of the store to fail.

 */

 let container = NSPersistentContainer(name: "CoreDataApp")

 �container.loadPersistentStores(completionHandler: {

(storeDescription, error) in

Figure 6-7.  Selecting the Use Core Data check box when creating a new project

Chapter 6 Understanding Data Persistence

140

 if let error = error as NSError? {

 �// Replace this implementation with code to handle the

error appropriately.

 �// fatalError() causes the application to generate

a crash log and terminate. You should not use this

function in a shipping application, although it may be

useful during development.

 /*

 Typical reasons for an error here include:

 �* The parent directory does not exist, cannot be

created, or disallows writing.

 �* The persistent store is not accessible, due to

permissions or data protection when the device is

locked.

 * The device is out of space.

 �* The store could not be migrated to the current

model version.

 �Check the error message to determine what the actual

problem was.

 */

 �fatalError("Unresolved error \(error), \(error.

userInfo)")

 }

 })

 return container

}()

// MARK: - Core Data Saving support

func saveContext () {

 let context = persistentContainer.viewContext

 if context.hasChanges {

 do {

 try context.save()

 } catch {

Chapter 6 Understanding Data Persistence

141

 �// Replace this implementation with code to handle the

error appropriately.

 �// fatalError() causes the application to generate

a crash log and terminate. You should not use this

function in a shipping application, although it may be

useful during development.

 let nserror = error as NSError

 �fatalError("Unresolved error \(nserror),

\(nserror.userInfo)")

 }

 }

}

Note I f you add a Core Data file to an existing project, you’ll need to add the
preceding code to the AppDelegate.swift file.

�Customizing a Data Model File
Creating a Core Data file creates a file with the .xcdatamodeld file extension. First, you’ll

need to create at least one entity and one or more attributes in each entity (see Figure 6-5)

where an entity represents a group of related data such as a person that contains data

such as a name, age, address, or phone number.

To create an entity in a Core Data file, follow these steps:

	 1.	 Click the .xcdatamodeld file in the Navigator pane. Xcode displays

a data editor as shown in Figure 6-8.

Chapter 6 Understanding Data Persistence

142

	 2.	 Click the Add Entity icon, or choose Editor ➤ Add Entity. Xcode

displays an Entity under the ENTITIES category.

	 3.	 Click this Entity to select it and press Enter to highlight the entire

name.

	 4.	 Type Item and press Enter. Entity names must always begin with

an uppercase letter such as Item, Person, or Vehicle.

After you’ve created at least one entity, you’ll need to add one or more attributes to

hold data. An attribute consists of descriptive name (typed in lowercase) and the type of

data the attribute will hold such as a string, integer, or date.

Figure 6-8.  The data editor lets you view and edit entities and attributes

Chapter 6 Understanding Data Persistence

143

To define an attribute in an entity, follow these steps:

	 1.	 Click the .xcdatamodeld file in the Navigator pane. Xcode displays

the data model editor (see Figure 6-8).

	 2.	 Click the Entity that you want to modify. Xcode displays an

Attributes category as shown in Figure 6-9.

Figure 6-9.  The Add Attribute button appears in two places

	 3.	 Click the Add Attribute button in the bottom of the Xcode window

or underneath the Attribute column, or choose Editor ➤ Add

Attribute. Xcode displays an attribute and a type as shown in

Figure 6-10.

Chapter 6 Understanding Data Persistence

144

	 4.	 Type name and press Enter. All attribute names must use

lowercase letters.

	 5.	 Click the Type popup menu to display a list of data types the

attribute can store as shown in Figure 6-11.

Figure 6-10.  Creating a new attribute

Figure 6-11.  Defining the type of data to store in an attribute

	 6.	 Choose String.

	 7.	 Click the Add Attribute button in the bottom of the Xcode window

or underneath the Attribute column, or choose Editor ➤ Add

Attribute. Xcode displays an attribute and a type (see Figure 6-10).

	 8.	 Type price and press Enter.

	 9.	 Click the Type popup menu and choose String. The two attributes

and one entity should look like Figure 6-12.

Chapter 6 Understanding Data Persistence

145

�Designing the User Interface
For our CoreDataApp project, we’ll design a simple user interface that will consist of two

text fields, two buttons, and a label. The two text fields will allow us to input data, the

label will display all stored data, and the two buttons will let us add or delete data.

To design the user interface for the CoreDataApp project, follow these steps:

	 1.	 Make sure the CoreDataApp project is loaded into Xcode.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop two text fields (one above

the other), two buttons, and a label onto the view.

	 4.	 Resize the label and text fields to make them both wider.

	 5.	 Click the label and choose View ➤ Inspectors ➤ Show Attributes

Inspector, or click the Attributes Inspector icon in the upper right

corner of Xcode window.

	 6.	 Click in the Lines text field and change the value to 0. This will

allow the label to display multiple lines of text.

Figure 6-12.  Defining a name and price attribute for an Item entity

Chapter 6 Understanding Data Persistence

146

	 7.	 Click the top text field, click in the Placeholder text field on the

Attributes Inspector pane, type Enter product name, and press

Enter.

	 8.	 Click the bottom text field, click in the Placeholder text field on the

Attributes Inspector pane, type Enter price, and press Enter.

	 9.	 Double-click one button, type Add Data, and press Enter.

	 10.	 Double-click the second button, type Delete Data, and press

Enter. The user interface should look similar to Figure 6-13.

Figure 6-13.  The user interface of a text field, label, and two buttons

	 11.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the bottom half of the submenu. Xcode adds

constraints to all the objects on the user interface.

	 12.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the ViewController.swift file.

Chapter 6 Understanding Data Persistence

147

	 13.	 Under the import UIKit line, add the following:

import Foundation

import CoreData

	 14.	 Move the mouse pointer over the top text field, hold down the

Control key, and Ctrl-drag under the class ViewController line.

	 15.	 Release the Control key and the left mouse button. A popup

window appears.

	 16.	 Click in the Name text field, type myProductTextField, and click

the Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var myProductTextField: UITextField!

	 17.	 Move the mouse pointer over the bottom text field, hold down the

Control key, and Ctrl-drag under the class ViewController line.

	 18.	 Release the Control key and the left mouse button. A popup

window appears.

	 19.	 Click in the Name text field, type myPriceTextField, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var myPriceTextField: UITextField!

	 20.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line.

	 21.	 Release the Control key and the left mouse button. A popup

window appears.

	 22.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var myLabel: UILabel!

	 23.	 Under the IBOutlets, add the following two lines:

var dataManager : NSManagedObjectContext!

var listArray = [NSManagedObject]()

Chapter 6 Understanding Data Persistence

148

	 24.	 Move the mouse pointer over the Add Data button, hold down

the Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 25.	 Release the Control key and the left mouse button. A popup

window appears.

	 26.	 Click in the Name text field, type addDataButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates an addDataButton IBAction method.

	 27.	 Move the mouse pointer over the Delete Data button, hold down

the Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 28.	 Release the Control key and the left mouse button. A popup

window appears.

	 29.	 Click in the Name text field, type deleteDataButton, click the

Type popup menu and choose UIButton, and click the Connect

button. Xcode creates a deleteDataButton IBAction method.

	 30.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

�Writing Swift Code
Once we’ve defined the user interface, it’s time to write Swift code to save, search, and

delete data. We need to write Swift code to add data from the two text fields when the

user clicks the Add Data button. Then we need more Swift code to delete data when the

user clicks the Delete Data button.

To write code to save, search, and delete data, follow these steps:

	 1.	 Make sure the CoreDataApp project is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

Chapter 6 Understanding Data Persistence

149

	 3.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 �let appDelegate = UIApplication.shared.delegate as! AppDelegate

 dataManager = appDelegate.persistentContainer.viewContext

 myLabel.text?.removeAll()

 fetchData()

}

The first two lines under the comment access the AppDelegate.

swift file, which contains persistentContainer (Core Data). The

next two lines simply clears the myLabel object on the user

interface and calls a function called fetchData().

	 4.	 Under the viewDidLoad method, add the fetchData() function as

follows:

func fetchData() {

 �let fetchRequest : NSFetchRequest<NSFetchRequestResult> =

NSFetchRequest(entityName: "Item")

 do {

 let result = try dataManager.fetch(fetchRequest)

 listArray = result as! [NSManagedObject]

 for item in listArray {

 �let product = item.value(forKey: "name") as! String

 let cost = item.value(forKey: "price") as! String

 myLabel.text! += product + " " + cost + ", "

 }

 } catch {

 print ("Error retrieving data")

 }

}

Chapter 6 Understanding Data Persistence

150

This fetchData() function tries to retrieve data stored in the “Item”

entity. Then it stores the item in listArray. A for-in loop retrieves

the name and price for each item and adds it to the myLabel

object.

	 5.	 Edit the addDataButton IBAction method as follows:

@IBAction func addDataButton(_ sender: UIButton) {

 �let newEntity = NSEntityDescription.

insertNewObject(forEntityName: "Item", into: dataManager)

 �newEntity.setValue(myProductTextField.text!, forKey: "name")

 �newEntity.setValue(myPriceTextField.text!, forKey: "price")

 do {

 try self.dataManager.save()

 listArray.append(newEntity)

 } catch {

 print ("Error saving data")

 }

 myLabel.text?.removeAll()

 myProductTextField.text?.removeAll()

 myPriceTextField.text?.removeAll()

 fetchData()

}

This creates new data for the “Item” entity and retrieves the data

from myProductTextField and myPriceTextField into the name

and price attributes. Then it saves the data and appends the new

data to listArray, which stores all the data currently saved.

Finally it clears myLabel, myProductTextField, and

myPriceTextField before calling fetchData(), which will display the

updated data into the myLabel object.

Chapter 6 Understanding Data Persistence

151

	 6.	 Edit the deleteDataButton IBAction method as follows:

@IBAction func deleteDataButton(_ sender: UIButton) {

 let deleteItem = myProductTextField.text!

 for item in listArray {

 if item.value(forKey: "name") as! String == deleteItem {

 dataManager.delete(item)

 }

 }

 do {

 try self.dataManager.save()

 } catch {

 print ("Error deleting data")

 }

 myLabel.text?.removeAll()

 myProductTextField.text?.removeAll()

 fetchData()

}

This method retrieves whatever appears in the

myProductTextField object and then uses a for-in loop to see if

that item exists in the stored data. If so, then it deletes that item.

Then it saves the data and clears the myLabel object and the

myProductTextField object before calling fetchData(), which

displays the updated data in the myLabel object again.

	 7.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 8.	 Click in the top text field and type car.

	 9.	 Click in the bottom text field and type any number such as 6000.

	 10.	 Click the Add Data button. The myLabel object displays “car 6000,”

on the screen.

	 11.	 Click in the top text field and type oven.

	 12.	 Click in the bottom text field and type any number such as 850.

Chapter 6 Understanding Data Persistence

152

	 13.	 Click the Add Data button. The myLabel object displays “car 6000,

oven 650” on the screen.

	 14.	 Choose Hardware ➤ Home. The Simulator displays the Home

screen.

	 15.	 Double-click the CoreDataApp icon to make its user interface

reappear. Notice that the data “car 6000, oven 650” still appears,

which shows that Core Data saved the information. (You can even

quit out of the Simulator here and run your app again to see that

Core Data will save the data even if the app stops running.)

	 16.	 Click in the top text field and type car.

	 17.	 Click the Delete Data button. Notice that the myLabel object now

only displays “oven 650,” on the screen.

	 18.	 Click in the top text field and type oven.

	 19.	 Click the Delete Data button. Notice that the myLabel object now

appears blank, showing that no data exists any more.

	 20.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Summary
Many simple apps, such as the Calculator app, can run perfectly fine without the need

to store data at all. However, most apps need to store data of some kind that the app can

retrieve each time it loads. For example, the Stocks app lets users customize the list of

stocks they want to follow. Once they enter this list, they want that list to appear every

time they launch the Stocks app again.

To store app settings, store data in UserDefaults, which lets you store data in a

dictionary so you’ll need to define a unique key for each chunk of data you want to store.

Once you’ve stored data in UserDefaults, you can always retrieve that data again by using

the key associated with each chunk of data.

You can store and retrieve UserDefault data anywhere in an app, but it’s often

stored and retrieved in the AppDelegate.swift file that monitors when an app enters the

background or returns to the foreground.

Chapter 6 Understanding Data Persistence

153

In addition to storing data in UserDefaults, you can also read or write data to a file.

This can be handy for storing larger amounts of data in a sequential list.

If you need to store larger amounts of related data, use Core Data to save this

information. Whether you store data in UserDefaults, files, or Core Data, you can always

retrieve that data again so an app can display that data automatically without requiring

the user to manually load data each time.

Beyond the technical aspects of storing data, data persistence also involves privacy

and security issues. For example, users generally don’t want to share their data with

others without their permission, especially health data or other personal information.

When storing data, be sure to keep security and privacy in mind so any data your app

saves can’t be accessed by another app.

Chapter 6 Understanding Data Persistence

155
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_7

CHAPTER 7

Passing Data
Between Files
Every storyboard consists of one or more view controllers that displays a view or window

of your program’s user interface. To control the user interface objects on a scene, such as

buttons or text fields, each view controller is connected to its own .swift class file where

you can write Swift code to create IBOutlets and IBAction methods.

In most iOS projects, there is a single AppDelegate.swift file and one or more view

controller files that manage the views and the user interface objects displayed on

that view such as buttons, text fields, and labels. So you need to know how to share

data between a view controller and the AppDelegate.swift file along with sharing data

between two different view controllers.

�Sharing Data with the AppDelegate.swift File
The AppDelegate.swift file tracks an app’s various states such as when it first launches,

when it goes into the background, and when it returns to the foreground. That means

the AppDelegate.swift often needs to retrieve data from other view controllers to save the

data before an app terminates or goes into the background.

Likewise, when the AppDelegate.swift file detects an app launching or returning to

the foreground, it may need to retrieve stored data and pass that data to a view controller

to display on the user interface.

156

To pass data to the AppDelegate.swift file, we need to make the AppDelegate.swift

file accessible to any view controller. To do this, we just need the following function

inside the AppDelegate.swift file:

 static func shared() -> AppDelegate {

 return UIApplication.shared.delegate as! AppDelegate

 }

In addition, we also need to declare properties inside the AppDelegate.swift file to

hold any passed data. When a view controller wants to pass data to the AppDelegate.

swift file, it simply needs to use code like this:

AppDelegate.shared().propertyHere = dataToPass

In the preceding code, propertyHere is the name of a property defined inside the

AppDelegate.swift file and dataToPass is the data being sent from a view controller to the

AppDelegate.swift file.

To send data from the AppDelegate.swift file to a view controller, the Swift code

in the view controller just needs to assign an AppDelegate property to a variable or

property like this:

variable = AppDelegate.shared().propertyHere

To see how to pass data to and from a view controller to the AppDelegate.swift file,

follow these steps:

	 1.	 Create a Single View App from the iOS category and name it

AppDelegateDataApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a text field, a button, and

a label onto the view. You may want to expand the width of both

the text field and label as shown in Figure 7-1.

Chapter 7 Passing Data Between Files

157

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the bottom half of the submenu. Xcode adds

constraints to all the user interface objects.

	 5.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard and ViewController.

swift file side by side.

	 6.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag underneath the class ViewController line in the

ViewController.swift file.

	 7.	 Release the Control key and the left mouse button. A popup

window appears.

	 8.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 9.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag underneath the class ViewController line in the

ViewController.swift file.

	 10.	 Release the Control key and the left mouse button. A popup

window appears.

Figure 7-1.  Creating a user interface for passing data to and from the
AppDelegate.swift file

Chapter 7 Passing Data Between Files

158

	 11.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myLabel: UILabel!

	 12.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 13.	 Release the Control key and the left mouse button. A popup

window appears.

	 14.	 Click in the Name text field, type sendDataButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates a sendDataButton IBAction method.

	 15.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 16.	 Click the AppDelegate.swift file in the Navigator pane.

	 17.	 Under the var window: UIWindow? Line, add the following:

var receivedData : String = ""

var sentData : String = "Data from AppDelegate"

static func shared() -> AppDelegate {

 return UIApplication.shared.delegate as! AppDelegate

}

The receivedData property will hold the data passed to the

AppDelegate.swift file from a view controller. The sentData

property contains a string “Data from AppDelegate”, which will be

sent to a view controller. The shared() function will allow any view

controller to access the AppDelegate.swift file to send or receive

data.

Chapter 7 Passing Data Between Files

159

	 18.	 Edit the applicationDidEnterBackground method as follows:

�func applicationDidEnterBackground(_ application: UIApplication) {

 �print("The AppDelegate file received this data = " +

receivedData)

}

This applicationDidEnterBackground method will run when the

user returns to the Home screen. Then a message will appear

in Xcode’s debug area, showing that the AppDelegate.swift file

received data from a view controller.

The entire AppDelegate.swift file should look like this:

import UIKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {

 var window: UIWindow?

 var receivedData : String = ""

 var sentData : String = "Data from AppDelegate"

 static func shared() -> AppDelegate {

 return UIApplication.shared.delegate as! AppDelegate

 }

 �func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 �// Override point for customization after application

launch.

 return true

 }

 func applicationWillResignActive(_ application: UIApplication) {

 }

Chapter 7 Passing Data Between Files

160

 �func applicationDidEnterBackground(_ application:

UIApplication) {

 �print("The AppDelegate file received this data = " +

receivedData)

 }

 �func applicationWillEnterForeground(_ application: UIApplication) {

 }

 func applicationDidBecomeActive(_ application: UIApplication) {

 }

 func applicationWillTerminate(_ application: UIApplication) {

 }

}

	 19.	 Click the ViewController.swift file in the Navigator pane.

	 20.	 Edit the sendDataButton IBAction method as follows:

@IBAction func sendDataButton(_ sender: UIButton) {

 �AppDelegate.shared().receivedData = myTextField.text ??

"default value"

 myLabel.text = AppDelegate.shared().sentData

}

The first line retrieves the text in the myTextField object and stores

it in the AppDelegate.swift file’s receivedData property. Then the

second line retrieves the sentData property from the AppDelegate.

swift file and stores it in the myLabel object on the user interface.

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var myLabel: UILabel!

Chapter 7 Passing Data Between Files

161

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 @IBAction func sendDataButton(_ sender: UIButton) {

 �AppDelegate.shared().receivedData = myTextField.text ??

"default value"

 myLabel.text = AppDelegate.shared().sentData

 }

}

	 21.	 Click the Run button, or choose Product ➤ Run. The Simulator

screen appears.

	 22.	 Click in the text field and type a message such as Data from view
controller.

	 23.	 Click the button. Notice that the label now displays Data from

AppDelegate, which is the data sent from the AppDelegate to the

ViewController.swift file.

	 24.	 Choose Hardware ➤ Home. The Home screen appears on the

Simulator. Notice that the debug area in Xcode now displays “The

AppDelegate file received this data = Data from view controller”

(or whatever data you typed into the text field). This shows that the

AppDelegate.swift file received data sent from the ViewController.

swift file.

	 25.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Sharing Data Between View Controllers
Many times view controllers need to pass data to each other. Normally when a view

controller receives data from its user interface, that data remains trapped in the .swift

file connected to that view controller in the Identity Inspector pane. Fortunately, view

controllers can pass data to other view controllers.

Chapter 7 Passing Data Between Files

162

For example, suppose you have two view controllers labelled SceneA and SceneB

where a segue links SceneA to SceneB. That means the user first sees SceneA then taps a

button to view SceneB. Tapping another button can make SceneA appear again.

If the user enters data in SceneA, you want to pass that data forward to SceneB. If

a segue points from SceneA to SceneB, you can use a special segue function that runs

when SceneA uses a segue to display SceneB. Within this segue function, you can create

an object from SceneB’s .swift class file and pass data to this object.

However, what if you want to pass data back from SceneB to SceneA? SceneB can’t

create an object from SceneA’s Swift class file because this risks creating a circular

reference where SceneA creates an object from SceneB and SceneB turns around and

creates an object from SceneA. Instead, you must pass data back to a view controller

using a delegate. SceneB passes data to a delegate and then this delegate then passes

data back to SceneA.

Essentially when you’re passing data forward from one view controller to another

through a segue, you can pass data using objects, but when you’re passing data

backward from one view controller to another without a segue, you must pass data using

a delegate as shown in Figure 7-2.

Figure 7-2.  Passing data forward and backward between scenes in a storyboard

Chapter 7 Passing Data Between Files

163

�Passing Data Forward
Before you can pass data between two view controllers, you need to connect them with

a segue. Then you need to make sure that each view controller has its own .swift file that

you can connect it to through the Identity Inspector. Finally, you need to write Swift code

in the .swift files of both view controllers to send and receive data.

To see how to pass data forward between two view controllers, follow these steps:

	 1.	 Create a Single View App from the iOS category and name it

PassForwardApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a button and a text field

onto the view. You may want to expand the width of the text field.

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to the button and text field.

	 5.	 Click the Library icon and drag and drop a View Controller into

the storyboard.

	 6.	 Move the mouse pointer over the button on the first view

controller, hold down the Control key, and Ctrl-drag from the

button over the second view controller as shown in Figure 7-3.

Chapter 7 Passing Data Between Files

164

Figure 7-3.  Ctrl-dragging from a button to another view controller creates a segue

	 7.	 Release the Control key and the left mouse button. A popup menu

appears as shown in Figure 7-4.

Figure 7-4.  Choosing the type of segue between view controllers

Chapter 7 Passing Data Between Files

165

	 8.	 Choose Show. Xcode creates a segue (arrow) connecting the two

view controllers in the storyboard.

	 9.	 Click the Library icon and drag and drop a label and a button onto

the second view controller. You may want to expand the width of

the label.

	 10.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to all the user interface objects. The entire storyboard

should look similar to Figure 7-5.

Figure 7-5.  The complete user interface

Chapter 7 Passing Data Between Files

166

	 11.	 Choose File ➤ New ➤ File. A template window appears.

	 12.	 Click Cocoa Touch Class under the iOS category and click the

Next button. Another window appears asking for a Class name

and Subclass.

	 13.	 Click in the Class text field and type SecondViewController.

	 14.	 Click the Subclass popup menu and choose UIViewController.

Then click the Next button and the Create button. Xcode adds the

SecondViewController.swift file in the Navigator pane.

	 15.	 Click the Main.storyboard file in the Navigator pane.

	 16.	 Click the second View Controller Scene in the Document Outline

to select the second view controller.

	 17.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 18.	 Click the Class popup menu and choose SecondViewController as

shown in Figure 7-6.

Figure 7-6.  Connecting the SecondViewController.swift file to the second view
controller in the storyboard

Chapter 7 Passing Data Between Files

167

At this point, we’ve designed a simple user interface where the

first view controller contains a text field and a button. We’ll be able

to type in the text field on the first view controller, click the button,

and pass the data to the second view controller so the text appears

in the label on that second view controller.

First, we need to define a property in the SecondViewController.

swift to hold any passed data. Then we need to load that data into

the label.

	 19.	 Click Second View Controller Scene in the Document Outline.

	 20.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the Main.storyboard file and the

SecondViewController.swift file side by side.

	 21.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 22.	 Release the Control key and the left mouse button. A popup

window appears.

	 23.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myLabel: UILabel!

	 24.	 Underneath this IBOutlet, add the following property:

var receivedData : String = ""

	 25.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 myLabel.text = receivedData

 // Do any additional setup after loading the view.

}

Chapter 7 Passing Data Between Files

168

	 26.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 27.	 Release the Control key and the left mouse button. A popup

window appears.

	 28.	 Click in the Name text field, type closeButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates a closeButton IBAction method.

	 29.	 Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {

 dismiss(animated: true, completion: nil)

}

The entire SecondViewController.swift file should look like this:

import UIKit

class SecondViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 var receivedData : String = ""

 override func viewDidLoad() {

 super.viewDidLoad()

 myLabel.text = receivedData

 // Do any additional setup after loading the view.

 }

 @IBAction func closeButton(_ sender: UIButton) {

 dismiss(animated: true, completion: nil)

 }

}

	 30.	 Click View Controller Scene in the Document Outline to select the

first view controller. Xcode displays the Main.storyboard file and

the ViewController.swift file side by side.

Chapter 7 Passing Data Between Files

169

	 31.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 32.	 Release the Control key and the left mouse button. A popup

window appears.

	 33.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 34.	 Add the following function under the viewDidLoad method:

�override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 �if let secondVC = segue.destination as? SecondViewController {

 �secondVC.receivedData = myTextField.text ?? "default value"

 }

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myTextField: UITextField!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 �override func prepare(for segue: UIStoryboardSegue, sender:

Any?) {

 �if let secondVC = segue.destination as?

SecondViewController {

Chapter 7 Passing Data Between Files

170

 �secondVC.receivedData = myTextField.text ??

"default value"

 }

 }

}

	 35.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, showing the user interface of the first view

controller (a button and a text field).

	 36.	 Click in the text field and type any text such as Hello, there!

	 37.	 Click the button. The user interface of the second view controller

appears (a button and a label) where the label displays the text

you typed into the first view controller.

	 38.	 Click the button. The second view controller disappears and the

first view controller appears again. Repeat steps 35–36 as often as

you like, typing different text into the text field to see how the data

gets passed forward from the first view controller to the second

view controller.

	 39.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

In this app, we passed data using a segue such as

 override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 if let secondVC = segue.destination as? SecondViewController {

 secondVC.receivedData = myTextField.text ?? "default value"

 }

 }

This code creates a constant called secondVC (you can use any arbitrary name you

want) and checks to make sure the segue links to the second view controller, which

is linked to the SecondViewController.swift file. If so, then it takes the text that the

user typed in the text field and stores it in the receivedData property defined in the

SecondViewController.swift file. (If the user did not type any text in the text field, then

the receivedData property gets sent “default value” instead.)

Chapter 7 Passing Data Between Files

171

There’s another way to pass data through a segue that involves giving the segue

a name. Then your code can run depending on the segue name. This method can be

handy in case you have multiple segues linked to the same view controller.

To see how to pass data forward using segue names, follow these steps:

	 1.	 Create a Single View App from the iOS category and name it

PassForwardNameApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop two buttons, a text field,

and a slider onto the view. You may want to expand the width of

the text field.

	 4.	 Double-click one button, type Pass Text, and press Enter.

	 5.	 Double-click the second button, type Pass Value, and press Enter.

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to all the user interface objects. The user interface

should look similar to Figure 7-7.

Figure 7-7.  The user interface of the first view controller

	 7.	 Click the Library icon and drag and drop a View Controller into

the storyboard.

Chapter 7 Passing Data Between Files

172

	 8.	 Move the mouse pointer over the Pass Text button on the first

view controller, hold down the Control key, and Ctrl-drag from the

button over the second view controller.

	 9.	 Release the Control key and the left mouse button. A popup menu

appears (see Figure 7-4).

	 10.	 Choose Show. Xcode creates a segue (arrow) connecting the two

view controllers in the storyboard.

	 11.	 Click the segue or click Show segue to “View Controller” in the

Document Outline.

	 12.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 13.	 Click in the Identifier text field, type textSegue, and press Enter as

shown in Figure 7-8.

Figure 7-8.  Giving a segue an identifier

	 14.	 Move the mouse pointer over the Pass Value button on the first

view controller, hold down the Control key, and Ctrl-drag from the

button over the second view controller.

	 15.	 Release the Control key and the left mouse button. A popup menu

appears (see Figure 7-4).

Chapter 7 Passing Data Between Files

173

	 16.	 Choose Show. Xcode creates a second segue (arrow) connecting

the two view controllers in the storyboard.

	 17.	 Click the segue or click Show segue to “View Controller” in the

Document Outline.

	 18.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 19.	 Click in the Identifier text field, type sliderSegue, and press Enter.

At this point, we have two segues that point to the same view

controller.

	 20.	 Click the Library icon and drag and drop a label and a button onto

the second view controller. You may want to expand the width of

the label.

	 21.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to all the user interface objects. The entire storyboard

should look similar to Figure 7-9. Notice the two segues linking

the view controllers.

Chapter 7 Passing Data Between Files

174

Figure 7-9.  The complete user interface

	 22.	 Choose File ➤ New ➤ File. A template window appears.

	 23.	 Click Cocoa Touch Class under the iOS category and click the Next

button. Another window appears asking for a Class name and

Subclass.

	 24.	 Click in the Class text field and type SecondViewController.

	 25.	 Click the Subclass popup menu and choose UIViewController.

Then click the Next button and the Create button. Xcode adds the

SecondViewController.swift file in the Navigator pane.

	 26.	 Click the Main.storyboard file in the Navigator pane.

	 27.	 Click the second View Controller Scene in the Document Outline

to select the second view controller.

Chapter 7 Passing Data Between Files

175

	 28.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 29.	 Click the Class popup menu and choose SecondViewController

(see Figure 7-6).

At this point, we’ve designed a simple user interface where the first

view controller contains a text field, a slider, and two buttons. If we

type in the text field and click the Pass Text button, we’ll pass text

to the second view controller. If we drag the slider left or right and

click the Pass Value button, we’ll pass a numeric value to the second

view controller. Depending on which segue opens the second view

controller, the label on the second view controller will display either

the text (from the text field) or a value (from the slider).

First, we need to define a property in the SecondViewController.

swift to hold any passed data. Then we need to load that data into

the label.

	 30.	 Click Second View Controller Scene in the Document Outline.

	 31.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the Main.storyboard file and the

SecondViewController.swift file side by side.

	 32.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 33.	 Release the Control key and the left mouse button. A popup

window appears.

	 34.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myLabel: UILabel!

	 35.	 Underneath this IBOutlet, add the following property:

var receivedData : String = ""

Chapter 7 Passing Data Between Files

176

	 36.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 myLabel.text = receivedData

 // Do any additional setup after loading the view.

}

	 37.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

SecondViewController.swift file.

	 38.	 Release the Control key and the left mouse button. A popup

window appears.

	 39.	 Click in the Name text field, type closeButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates a closeButton IBAction method.

	 40.	 Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {

 dismiss(animated: true, completion: nil)

}

The entire SecondViewController.swift file should look like this:

import UIKit

class SecondViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 var receivedData : String = ""

 override func viewDidLoad() {

 super.viewDidLoad()

 myLabel.text = receivedData

 // Do any additional setup after loading the view.

 }

Chapter 7 Passing Data Between Files

177

 @IBAction func closeButton(_ sender: UIButton) {

 dismiss(animated: true, completion: nil)

 }

}

	 41.	 Click View Controller Scene in the Document Outline to select the

first view controller. Xcode displays the Main.storyboard file and

the ViewController.swift file side by side.

	 42.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 43.	 Release the Control key and the left mouse button. A popup

window appears.

	 44.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 45.	 Move the mouse pointer over the slider, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 46.	 Release the Control key and the left mouse button. A popup

window appears.

	 47.	 Click in the Name text field, type mySlider, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var mySlider: UISlider!

	 48.	 Add the following function under the viewDidLoad method:

�override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let secondVC = segue.destination as? SecondViewController

 if segue.identifier == "textSegue" {

 �secondVC?.receivedData = myTextField.text ?? "default value"

 }

Chapter 7 Passing Data Between Files

178

 if segue.identifier == "sliderSegue" {

 �secondVC?.receivedData = "Slider value = \(mySlider.value)"

 }

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var mySlider: UISlider!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 �override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let secondVC = segue.destination as? SecondViewController

 if segue.identifier == "textSegue" {

 �secondVC?.receivedData = myTextField.text ?? "default

value"

 }

 if segue.identifier == "sliderSegue" {

 �secondVC?.receivedData = "Slider value = \(mySlider.

value)"

 }

 }

}

	 49.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, showing the user interface of the first view

controller (two buttons, a text field, and a slider).

	 50.	 Click in the text field and type any text such as Hello, there!

Chapter 7 Passing Data Between Files

179

	 51.	 Click the Pass Text button. The user interface of the second view

controller appears (a button and a label) where the label displays

the text you typed into the first view controller.

	 52.	 Click the button. The second view controller disappears and the

first view controller appears again.

	 53.	 Drag the slider to the far left and click the Pass Value button. The

second view controller appears where the label displays the value

from the slider on the first view controller.

	 54.	 Click the button to make the second view controller disappear and

make the first view controller appear again. Repeat the preceding

steps with different text and slider values to see how the first view

controller passes data to the second view controller depending on

which segue runs.

	 55.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Passing Data Backward with a Protocol
The first step to passing data backward between view controllers in a storyboard is to

define a protocol. You can give this protocol any arbitrary name you wish, but the key

feature is that the protocol must define a function that accepts one or more parameters

that represent the data you want to send back.

So the three parts of the protocol you must define are

•	 The protocol name (which can be anything you wish)

•	 A function name (which can also be anything you wish)

•	 One or more parameters that represent the data and data type (such

as String or Int) that you want to pass back

A protocol declaration can look as simple as this:

protocol ProtocolName {

 func functionName(dataToSendBack : DataType)

}

Chapter 7 Passing Data Between Files

180

In the preceding example, the function’s parameter list contains one item, which

means it can pass back one item, but if you want, you could add more items to the

function’s parameter list to send back two or more items.

You need to place the protocol declaration above the class line in the Swift class file

such as

import UIKit

protocol MyProtocol {

 func sendBackData(thisData: String)

}

class SecondViewController: UIViewController {

After defining a protocol, you just create a delegate inside the class like this:

class SecondViewController: UIViewController {

 var delegate : MyProtocol?

You must use the exact word “delegate” but the protocol name can be anything you wish.

Once you’ve defined a delegate, you must then use that delegate, combined with the

function defined by the protocol, to send back data such as

delegate?.functionName(valueSent: DatatoSend)

To see how to pass data forward between two view controllers, follow these steps:

	 1.	 Create a Single View App from the iOS category and name it

PassBackwardApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop two buttons and a label

onto the view. You may want to expand the width of the label.

	 4.	 Double-click one button, type Open, and press Enter.

	 5.	 Double-click the other button, type View Data, and press Enter.

The user interface should look similar to Figure 7-10.

Chapter 7 Passing Data Between Files

181

Figure 7-10.  Designing the user interface of the initial view controller

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to all the user interface objects.

	 7.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the Main.storyboard file and the

ViewController.swift file side by side.

	 8.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 9.	 Release the Control key and the left mouse button. A popup

window appears.

	 10.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myLabel: UILabel!

	 11.	 Under this IBOutlet, add the following property:

var receivedData : String = ""

	 12.	 Move the mouse pointer over the View Data button, hold down

the Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 13.	 Release the Control key and the left mouse button. A popup

window appears.

Chapter 7 Passing Data Between Files

182

	 14.	 Click in the Name text field, type viewDataButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates a viewDataButton IBAction method.

	 15.	 Edit this viewDataButton IBAction method as follows:

@IBAction func viewDataButton(_ sender: UIButton) {

 myLabel.text = receivedData

 }

This completes the user interface of the first (initial) view controller. At this point,

we need to add a second view controller to the storyboard, design its user interface, and

write Swift code to define a protocol. After we’re done writing Swift code in the second

view controller, we’ll need to go back to the first view controller .swift file and finish

editing the code there.

Let’s design the second view controller, attach a .swift file to this view controller, and

write Swift code in its .swift file.

	 1.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or

click the Standard Editor icon in the upper right corner of the

Xcode window.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a View Controller in the

storyboard.

	 4.	 Move the mouse pointer over the Open button on the first view

controller, hold down the Control key, and Ctrl-drag over the

second view controller.

	 5.	 Release the Control key and the left mouse button. A popup menu

appears.

	 6.	 Choose Show. Xcode displays a segue between the two view

controllers.

	 7.	 Choose File ➤ New ➤ File. A template window appears.

	 8.	 Click Cocoa Touch Class under the iOS category and click the Next

button. Another window appears asking for a Class name and

Subclass.

Chapter 7 Passing Data Between Files

183

	 9.	 Click in the Class text field and type SecondViewController.

	 10.	 Click the Subclass popup menu and choose UIViewController.

Then click the Next button and the Create button. Xcode adds the

SecondViewController.swift file in the Navigator pane.

	 11.	 Click the Main.storyboard file in the Navigator pane.

	 12.	 Click the second View Controller Scene in the Document Outline

to select the second view controller.

	 13.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 14.	 Click the Class popup menu and choose SecondViewController

(see Figure 7-6).

	 15.	 Click the Library icon and drag and drop a button and a text field

onto the view. You may want to expand the width of the text field.

	 16.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the Main.storyboard file and the

SecondViewController.swift file side by side.

	 17.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the class SecondViewController line in

the SecondViewController.swift file.

	 18.	 Release the Control key and the left mouse button. A popup

window appears.

	 19.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 20.	 Add the following under the import UIKit line:

protocol MyProtocol {

 func sendBackData(thisData: String)

}

Chapter 7 Passing Data Between Files

184

This defines our protocol, which we’ll have to implement in the

ViewController.swift file.

	 21.	 Add the following variable under the IBOutlet as follows:

var delegate : MyProtocol?

	 22.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

SecondViewController.swift file.

	 23.	 Release the Control key and the left mouse button. A popup

window appears.

	 24.	 Click in the Name text field, type closeButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates a closeButton IBAction method.

	 25.	 Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {

 �delegate?.sendBackData(thisData: myTextField.text ?? "default

value")

 dismiss(animated: true, completion: nil)

 }

This code uses the protocol function to send data back from

myTextField. Then it removes the second view controller from the

screen. The entire SecondViewController.swift file should look like

this:

import UIKit

protocol MyProtocol {

 func sendBackData(thisData: String)

}

class SecondViewController: UIViewController {

 @IBOutlet var myTextField: UITextField!

 var delegate : MyProtocol?

Chapter 7 Passing Data Between Files

185

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 @IBAction func closeButton(_ sender: UIButton) {

 �delegate?.sendBackData(thisData: myTextField.text ??

"default value")

 dismiss(animated: true, completion: nil)

 }

}

	 26.	 Click the ViewController.swift file in the Navigator pane. We now

have to make sure the ViewController.swift file conforms to the

protocol we just defined in the SecondViewController.swift file.

	 27.	 Add MyProtocol to the class ViewController line like this:

class ViewController: UIViewController, MyProtocol {

	 28.	 Add the following function underneath the viewDidLoad method:

func sendBackData(thisData: String) {

 self.receivedData = thisData

}

	 29.	 Add the following function above the viewDataButton IBAction

method:

�override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let secondVC = segue.destination as! SecondViewController

 secondVC.delegate = self

 }

Chapter 7 Passing Data Between Files

186

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController, MyProtocol {

 @IBOutlet var myLabel: UILabel!

 var receivedData : String = ""

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 func sendBackData(thisData: String) {

 self.receivedData = thisData

 }

 �override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let secondVC = segue.destination as! SecondViewController

 secondVC.delegate = self

 }

 @IBAction func viewDataButton(_ sender: UIButton) {

 myLabel.text = receivedData

 }

}

	 30.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 31.	 Click the Open button. The second view controller appears on the

screen.

	 32.	 Click in the text field and type any text such as Hello, there!

	 33.	 Click the button. The second view controller disappears and the

first view controller appears.

	 34.	 Click the View Data button. Notice that the label now displays the

text typed from the second view controller.

Chapter 7 Passing Data Between Files

187

�Passing Data Backward with a Delegate
Another way to pass data backward is to declare the first view controller as a delegate.

Then define properties in both view controllers that hold the data you want to pass back

from the second view controller.

To see how to use a delegate to pass data backward, follow these steps:

	 1.	 Create a Single View App from the iOS category and name it

PassBackDelegateApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a button and a label onto

the view. You may want to expand the width of the label.

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to all the user interface objects.

	 5.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the Main.storyboard file and the

ViewController.swift file side by side.

	 6.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 7.	 Release the Control key and the left mouse button. A popup

window appears.

	 8.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myLabel: UILabel!

	 9.	 Underneath this IBOutlet, add the following to define a property:

var receivedText : String = ""

Chapter 7 Passing Data Between Files

188

	 10.	 Add the following method in the ViewController.swift file:

override func viewWillAppear(_ animated: Bool) {

 myLabel.text = receivedText

}

	 11.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or

click the Standard Editor icon in the upper right corner of the

Xcode window.

	 12.	 Click the Main.storyboard file in the Navigator pane.

	 13.	 Click the Library icon and drag and drop a View Controller in the

storyboard.

	 14.	 Move the mouse pointer over the button on the first view

controller, hold down the Control key, and Ctrl-drag anywhere

over the second view controller.

	 15.	 Release the Control key and the left mouse button. A popup menu

appears (see Figure 7-4).

	 16.	 Choose Show. Xcode adds a segue from the first view controller to

the second view controller.

	 17.	 Click the Library icon and drag and drop a button and a text field

onto the second view controller. You may want to resize the width

of the text field.

	 18.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to all the user interface objects.

	 19.	 Choose File ➤ New ➤ File. A template window appears.

	 20.	 Click Cocoa Touch Class under the iOS category and click the Next

button. Another window appears asking for a Class name and

Subclass.

	 21.	 Click in the Class text field and type SecondViewController.

	 22.	 Click the Subclass popup menu and choose UIViewController.

Then click the Next button and the Create button. Xcode adds the

SecondViewController.swift file in the Navigator pane.

Chapter 7 Passing Data Between Files

189

	 23.	 Click the Main.storyboard file in the Navigator pane.

	 24.	 Click the second View Controller Scene in the Document Outline

to select the second view controller.

	 25.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 26.	 Click the Class popup menu and choose SecondViewController

(see Figure 7-6).

	 27.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the Main.storyboard file and the

SecondViewController.swift file side by side.

	 28.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the class SecondViewController line in

the SecondViewController.swift file.

	 29.	 Release the Control key and the left mouse button. A popup

window appears.

	 30.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 31.	 Add the following under the IBOutlet to define a delegate and a

property to hold a string:

var sentText : String = ""

var delegate : ViewController!

Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

SecondViewController.swift file.

	 32.	 Release the Control key and the left mouse button. A popup

window appears.

Chapter 7 Passing Data Between Files

190

	 33.	 Click in the Name text field, type closeButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates a closeButton IBAction method.

	 34.	 Edit this closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {

 sentText = myTextField.text ?? "default value"

 delegate.receivedText = sentText

 dismiss(animated: true, completion: nil)

}

This closeButton IBAction method takes the text from the text field

and stores it in the receivedText property of the delegate, which is

defined as the ViewController.swift file connected to the first view

controller.

The entire SecondViewController.swift file should look like this:

import UIKit

class SecondViewController: UIViewController {

 @IBOutlet var myTextField: UITextField!

 var sentText : String = ""

 var delegate : ViewController!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 @IBAction func closeButton(_ sender: UIButton) {

 sentText = myTextField.text ?? "default value"

 delegate.receivedText = sentText

 dismiss(animated: true, completion: nil)

 }

}

Chapter 7 Passing Data Between Files

191

	 35.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or

click the Standard Editor icon in the upper right corner of the

Xcode window.

	 36.	 Click the ViewController.swift file in the Navigator pane.

	 37.	 Add the following method:

�override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let vc = segue.destination as! SecondViewController

 vc.sentText = self.receivedText

 vc.delegate = self

}

This method defines a constant called vc that represents the

segue destination, which is the second view controller that’s

connected to the SecondViewController.swift file. Then it sends

the receivedText value (in the first view controller) to the sentText

property (in the second view controller). Finally, it defines itself

(the ViewController.swift file) as the delegate declared in the

second view controller.

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 var receivedText : String = ""

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 override func viewWillAppear(_ animated: Bool) {

 myLabel.text = receivedText

 }

Chapter 7 Passing Data Between Files

192

 �override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let vc = segue.destination as! SecondViewController

 vc.sentText = self.receivedText

 vc.delegate = self

 }

}

	 38.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, displaying a button.

	 39.	 Click the button. The second view controller appears with a button

and a text field.

	 40.	 Click in the text field and type text such as Hello, there!

	 41.	 Click the button. The first view controller appears, displaying the

text (from the second view controller) in its label.

	 42.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Passing Data with the Notification Center
Yet another way to pass data between view controller files is through the notification

center. Using the notification center to pass data can be especially useful when you

need to share data between two or more view controllers at the same time, or if the

view controllers are not connected by a segue. There’s a three-step process to using

notification center:

•	 Define a unique name for a notification center.

•	 Add an observer to that notification center.

•	 Send a notification to the observer and pass data.

To define a name for a notification center, you can choose any arbitrary name such as

static let notificationName = Notification.Name("myNotification")

Chapter 7 Passing Data Between Files

193

To add a notification center observer involves defining a function to run when it

receives a notification and defining the name of the notification center to observe. This

can be done with a statement like this:

NotificationCenter.default.addObserver(self, selector: #selector(functionNa

me(notification:)), name: notificationName, object: nil)

Where “functionName” is the name of your function to run when the notification is

received, and “notificationName” is the name of the notification center you defined.

Finally, you need to send a notification and pass data at the same time. This can be

done using this statement:

NotificationCenter.default.post(name: NSNotification.Name(rawValue:

"Notification Name"), object: dataSent)

Where “Notification Name” is the name you chose for the notification center, and

“dataSent” is any data you wish to pass to a notification observer.

To see how to pass data using notifications, follow these steps:

	 1.	 Create a new iOS Single View App and name it NotificationPassApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a button and a label onto

the view. You may want to resize the label to make it wider.

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the bottom half of the submenu. Xcode adds

constraints to the button and label.

	 5.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the ViewController.swift file.

	 6.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line.

	 7.	 Release the Control key and the left mouse button. A popup

window appears.

Chapter 7 Passing Data Between Files

194

	 8.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var myLabel: UILabel!

	 9.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 10.	 Click the Main.storyboard file in the Navigator pane.

	 11.	 Click the Library icon and drag and drop a View Controller in the

storyboard.

	 12.	 Move the mouse pointer over the button on the initial (first) view

controller, hold down the Control key, and Ctrl-drag anywhere

over the second view controller.

	 13.	 Release the Control key and the left mouse button. A popup menu

appears (see Figure 7-4).

	 14.	 Choose Show. Xcode adds a segue between the two view

controllers.

	 15.	 Click the Library icon and drag and drop a button and a text field

onto the second view controller.

	 16.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the bottom half of the submenu. Xcode adds

constraints to the button and text field.

	 17.	 Choose File ➤ New ➤ File. A template window appears.

	 18.	 Click Cocoa Touch Class under the iOS category and click the Next

button. Another window appears asking for a Class name and

Subclass.

	 19.	 Click in the Class text field and type SecondViewController.

	 20.	 Click the Subclass popup menu and choose UIViewController.

Then click the Next button and the Create button. Xcode adds the

SecondViewController.swift file in the Navigator pane.

Chapter 7 Passing Data Between Files

195

	 21.	 Click the Main.storyboard file in the Navigator pane.

	 22.	 Click the second View Controller Scene in the Document Outline

to select the second view controller.

	 23.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 24.	 Click the Class popup menu and choose SecondViewController

(see Figure 7-6).

	 25.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the SecondViewController.swift file.

	 26.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the class SecondViewController line in

the SecondViewController.swift file.

	 27.	 Release the Control key and the left mouse button. A popup

window appears.

	 28.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var myTextField: UITextField!

	 29.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

SecondViewController.swift file.

	 30.	 Release the Control key and the left mouse button. A popup

window appears.

	 31.	 Click in the Name text field, type closeButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates a closeButton IBAction method.

Chapter 7 Passing Data Between Files

196

	 32.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 33.	 Click the ViewController.swift file in the Navigator pane.

	 34.	 Add the following under the IBOutlet to give the notification

center a unique name:

static let notificationName = Notification.Name("myNotification")

	 35.	 Add the following function under the static let line you just write

in the previous step:

@objc func onNotification(notification:Notification)

{

 let data = notification.object

 let temp = String(describing: data!)

 myLabel.text = temp

}

This function is called “onNotification” although you can choose

any arbitrary name for the function. First, it stores the notification.

object in a constant called “data” (this can be any arbitrary name).

The notification.object is the data sent.

Next, another constant called “temp” (which can be any arbitrary

name) takes the string value of the passed data and unwraps it

since it’s an optional. Finally, it stores this string in the myLabel

object. The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 �static let notificationName = Notification.

Name("myNotification")

Chapter 7 Passing Data Between Files

197

 @objc func onNotification(notification:Notification)

 {

 let data = notification.object

 let temp = String(describing: data!)

 myLabel.text = temp

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 �NotificationCenter.default.addObserver(self, selector:

#selector(onNotification(notification:)), name:

ViewController.notificationName, object: nil)

 }

}

	 36.	 Click the SecondViewController.swift file in the Navigator pane.

	 37.	 Edit the closeButton IBAction method as follows:

@IBAction func closeButton(_ sender: UIButton) {

 let dataSent = myTextField.text

 �NotificationCenter.default.post(name: NSNotification.

Name(rawValue: "myNotification"), object: dataSent)

 dismiss(animated: true, completion: nil)

}

This IBAction method retrieves the text in the text field and stores

it in a constant called “dataSent” (which can be any arbitrary

name). Next, this IBAction method sends a notification with the

post command. This post command identifies the notification

center by name (“myNotification”) and then passes data

(“dataSent”) to any observer. Finally, the dismiss command makes

the second view controller disappear.

Chapter 7 Passing Data Between Files

198

The entire SecondViewController.swift file should look like this:

import UIKit

class SecondViewController: UIViewController {

 @IBOutlet var myTextField: UITextField!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 @IBAction func closeButton(_ sender: UIButton) {

 let dataSent = myTextField.text

 �NotificationCenter.default.post(name: NSNotification.

Name(rawValue: "myNotification"), object: dataSent)

 dismiss(animated: true, completion: nil)

 }

}

	 38.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 39.	 Click the button. The second view controller appears, displaying a

button and a text field.

	 40.	 Click in the text field and type text such as Hello, there!

	 41.	 Click the button. This first view controller appears, displaying the

text sent by the second view controller.

	 42.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Summary
Most apps will likely contain multiple view controllers. Data entered into one view

controller will likely need to be used by another view controller. By adding a shared()

function in the AppDelegate.swift file, you can make the AppDelegate.swift file

accessible to any other .swift file in a project. That way the AppDelegate.swift file can

receive data from another file or send data to another file.

Chapter 7 Passing Data Between Files

199

If the two view controllers are connected by a segue, you can pass data using the

prepare for segue function. You can even name segues to make it easy to identify which

segue is used to display the next view controller. Passing data from one view controller to

another one, connected by a segue, passes data forward.

If you need to pass data backward from one view controller that does not have a

segue leading to the previous view controller, you need to use a protocol as a middleman

to temporarily hold data before passing it to the previous view controller.

Another way to pass data between view controllers is through the notification center.

This can be especially handy to pass data to multiple view controllers at once or to view

controllers that are not connected by a segue.

Passing data between different files helps avoid the use of global variables. By using

different ways to pass data, your app can access data no matter which view controller it

came from.

Chapter 7 Passing Data Between Files

201
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_8

CHAPTER 8

Translating with
Localization
Most people create apps in their native language, but if you translate your app into other

languages, you could sell and distribute your app to other parts of the world. Translating

text from one language to another requires an experienced translator, but from a technical

point of view, how do you create a single app and let it display different languages?

The hard way is to create separate apps for each language. The easy way is to create

a single app and use something called localization. The idea behind localization is that

you create your app once, then instead of typing text to appear in the app, you use a

special localized string that represents the text to display.

Now you store different text in separate files stored in a localization folder.

Depending on the language the user’s iOS device uses, your app then yanks out the

correct file that matches the user’s language. So if you wanted your app to display text

in English, Arabic, and Russian, you would create one file containing English words to

appear in your app, a second file containing Arabic words that represent equivalent

English text, and a third file containing Russian words that represent equivalent text.

If the user switches the settings on their iOS device to display text in Russian, then

your app will automatically replace all text with Russian text. If the user switches to

Arabic, then your app will automatically replace all text with Arabic text. By creating text

in different languages, you can create an app that adapts to different languages.

An app that supports localization will likely need to replace the following to adjust to

different languages:

•	 Text in the user interface such as buttons and labels

•	 Images

•	 Text displayed by code

•	 The name of the app displayed on the Home screen

202

Besides changing text and images that appear on the user interface, localization also

needs to adjust the app’s user interface. For example, buttons that may look perfect when

displayed in English may look too small when displaying equivalent text in German

or may look too big when displaying equivalent text in Chinese. When designing a

user interface, you need to consider the size of displayed text and make sure your user

interface adapts to different size text.

Besides the size and text itself, you must also consider how different cultures and

regions display dates and numbers. In some areas, people separate decimal numbers

with a period such as 3.1415, while in others, people separate decimal numbers with a

comma such as 3,1415.

Likewise, some areas display dates with the month first followed by the day and the

year like June 4, 2019, while other places display dates differently such as 4 June 2019. So

not only must your app display the proper text adjusted on the user interface to appear

correctly, but your app must also recognize different number and date formats.

�Designing the User Interface
When you place objects on the user interface that display text such as buttons or labels,

you generally resize these objects so the text appears completely visible. However when

replacing your native language with equivalent words in other languages, those words

may be shorter or longer. That means your user interface objects need to adapt to text.

Xcode helps you design user interfaces in two ways. First, always define constraints

on your user interface objects. This uses Auto Layout that allows the user interface

to dynamically adapt to longer or shorter text of different languages. When setting

constraints, avoid defining fixed values such as widths.

Second, Xcode offers a preview feature that lets you see how user interface objects

will look with different pseudolanguages that mimic real languages by displaying extra-

long text or text with accent characters above and below text. This lets you see if your

user interface provides enough width and height to display different types of text.

To see how to design a user interface for different languages, follow these steps:

	 1.	 Create a Single View App from the iOS category and name it

LocalApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

Chapter 8 Translating with Localization

203

	 3.	 Click the Library icon and drag and drop three labels onto the

view similar to Figure 8-1.

	 4.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard and ViewController.

swift file side by side.

	 5.	 Click the double circle icon at the top in the assistant editor

(the window on the right). A popup menu appears as shown in

Figure 8-2.

	 6.	 Choose Preview ➤ Main.storyboard (Preview). Xcode displays a

preview of the Main.storyboard file in the assistant editor

(the right pane). In the bottom right corner of the assistant editor,

a Language button displays your native language such as English.

Figure 8-1.  Designing a user interface for multiple languages

Figure 8-2.  Choosing the preview of the user interface

Chapter 8 Translating with Localization

204

	 7.	 Click this Language button that displays your current language

(such as English). A popup menu appears as shown in Figure 8-3.

	 8.	 Choose Double-Length Pseudolanguage, which simply duplicates

your current text to show you how longer text will look on your

user interface. Notice that the labels cut off text, which tells you

that the labels are not wide enough.

	 9.	 Click the Language button and choose Accented Pseudolanguage.

Xcode displays text with accent characters above and below the

text as shown in Figure 8-4.

Figure 8-3.  Choosing a different pseudolanguage

Figure 8-4.  Viewing accented pseudolanguage

Chapter 8 Translating with Localization

205

	 10.	 Click the Language button and choose Bounded String

Pseudolanguage. Xcode displays the text cut off, which shows that

the labels are not wide enough.

	 11.	 Click View Controller Scene in the Document Outline and then

choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to all the user interface objects.

	 12.	 Click the Language button in the assistant editor and choose

Double-Length Pseudolanguage, Accented Pseudolanguage, and

Bounded String Pseudolanguage. Notice that with constraints

defined, Auto Layout automatically adjusts the width of the label

to accommodate larger and shorter text.

	 13.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

By using Xcode’s Auto Layout features (constraints) and the preview feature of the

assistant editor, you can design a user interface that adapts to different languages.

�Creating a Localization File
Localization works by creating multiple files to store the text you want to display in other

languages. To create localization files, you need to define which languages you want your

Xcode project to support. For each language you want your app to support, you’ll need to

define one localization setting.

To see how to add localization to a project, follow these steps:

	 1.	 Make sure the LocalApp project is loaded into Xcode.

	 2.	 Click the project name at the top of the Navigator pane as shown

in Figure 8-5. Xcode displays information about the project in the

middle pane.

Chapter 8 Translating with Localization

206

	 3.	 Click the Select popup menu in the upper left corner of the middle

Xcode pane. A popup menu appears as shown in Figure 8-6.

	 4.	 Click the project name (such as LocalApp) under the Project

category at the top of the popup menu.

	 5.	 Click Info at the top of the middle Xcode pane. Xcode displays an

Info pane as shown in Figure 8-7.

Figure 8-5.  Selecting the project name

Figure 8-6.  Selecting the project name

Chapter 8 Translating with Localization

207

	 6.	 Click the + icon under the Localizations category. A popup menu

appears of different languages as shown in Figure 8-8.

Figure 8-7.  The project Info pane

Figure 8-8.  The project Info pane

Chapter 8 Translating with Localization

208

	 7.	 Choose a language you want your app to support. For this

example, choose French. A window appears, displaying all the

files to localize.

	 8.	 Make sure all options are selected and click the Finish button.

Notice that Xcode now displays a gray disclosure triangle to the

left of the Main.storyboard file in the Navigator pane.

	 9.	 Click this gray disclosure triangle to the left of the Main.storyboard

file. Notice that Xcode has now created two additional files: Main.

storyboard (Base) that represents your native language and Main.

strings (French) (or whatever language you chose) as shown in

Figure 8-9.

The Main.storyboard (Base) file contains the storyboard of your project where you

can design the user interface. The Main.strings file contains text to display on the user

interface. Xcode identifies the text to appear in the user interface by the Object ID, which

appears on the Identity Inspector pane.

To view the Object ID of a user interface object, follow these steps:

	 1.	 Make sure the LocalApp project is loaded into Xcode.

	 2.	 Click the Main.storyboard file in the Navigator pane.

Figure 8-9.  Viewing multiple files in the Main.storyboard

Chapter 8 Translating with Localization

209

	 3.	 Click a user interface object and choose View ➤ Inspectors ➤

Show Identity Inspector, or click the Identity Inspector icon in the

upper right corner of the Xcode window. The Object ID appears as

shown in Figure 8-10.

�Storing Text
The most common way to store text in an app is by simply typing it in code such as

var greeting = "Hello"

Unfortunately, such “hard coding” of text makes it difficult to change the text for

other languages. Instead of typing the actual text to appear, we need to identify where

we want text to appear and then let our app replace the text with the appropriate words

depending on the user’s language displayed on the iOS device.

Figure 8-10.  Finding the Object ID of a user interface object

Chapter 8 Translating with Localization

210

If you’re familiar with mail merge, the idea is to insert fields where you want specific

names and addresses to appear. String localization works the same way. Instead of

typing the actual text, we identify all text with NSLocalizedString like this:

var greeting = NSLocalizedString("Hello", comment: String)

You still type the actual text to appear but it appears as an NSLocalizedString. Then

you’ll need to create a list of NSLocalizedStrings with their equivalent translated text into

another language such as French, Russian, or Arabic.

The comment portion of the NSLocalizedString is optional, but is meant to help a

translator understand the context of the text. This can help a translator more accurately

translate your text based on the comment you provide.

Once you’ve identified text in your code as NSLocalizedString, the next step is to

edit the Main.strings file that shows the user interface (identified by Object ID) and its

equivalent word or term in another language.

In our example, let’s assume that we want to display a greeting in the top label, the

date in the middle label, and a number in the bottom label. That means we’ll need both

our native language text and the foreign language text to appear in each label, identified

by its Object ID.

When we define a localization file (such as French), Xcode automatically creates a

Main.strings file that identifies user interface objects by their Object ID such as

/* Class = "UILabel"; text = "Label"; ObjectID = "FBY-Dx-bNj"; */

"FBY-Dx-bNj.text" = "Label";

/* Class = "UILabel"; text = "Label"; ObjectID = "JzJ-vs-9Y7"; */

"JzJ-vs-9Y7.text" = "Label";

/* Class = "UILabel"; text = "Label"; ObjectID = "aby-R3-3e4"; */

"aby-R3-3e4.text" = "Label";

What we need to do is customize this Main.strings file to display the foreign language

equivalent. To do this with the LocalApp project, follow these steps:

	 1.	 Make sure the LocalApp project is loaded into Xcode and that you

have defined a localization file for French.

	 2.	 Click the Main.storyboard file in the Navigator pane.

Chapter 8 Translating with Localization

211

	 3.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard and ViewController.

swift file side by side.

	 4.	 Move the mouse pointer over the top label, hold down the Control

key, and Ctrl-drag underneath the class ViewController line in the

ViewController.swift file.

	 5.	 Release the Control key and the left mouse button. A popup

window appears.

	 6.	 Click in the Name text field, type greetingLabel, and click the

Connect button.

	 7.	 Repeat steps 4–6 for the middle and bottom label, except name

the middle label dateLabel and the bottom label numberLabel.
You should have the following three IBOutlets:

@IBOutlet var greetingLabel: UILabel!

 @IBOutlet var dateLabel: UILabel!

 @IBOutlet var numberLabel: UILabel!

	 8.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 �greetingLabel.text = NSLocalizedString("Hello",

comment: "Formal greeting")

 �dateLabel.text = NSLocalizedString("Date", comment:

"Date format")

 �numberLabel.text = NSLocalizedString("Number",

comment: "Number format")

}

This code defines the text to appear in each label when the app

runs. In this case, the top label will display “Hello”, the middle

label will display “Date”, and the bottom label will display

“Number”.

Chapter 8 Translating with Localization

212

	 9.	 Click the Main.strings (French) file in the Navigator pane under

the Main.storyboard group. Notice that Xcode identifies each label

by its Object ID, which is a mix of letters and numbers such as

JzJ-vs-9Y7. (The exact Object ID of your labels will be different for

every Xcode project.)

	 10.	 Edit the Main.strings file similar to the following:

/* Class = "UILabel"; text = "Label"; ObjectID = "FBY-Dx-bNj"; */

"FBY-Dx-bNj.text" = "Bonjour";

/* Class = "UILabel"; text = "Label"; ObjectID = "JzJ-vs-9Y7"; */

"JzJ-vs-9Y7.text" = "La date";

/* Class = "UILabel"; text = "Label"; ObjectID = "aby-R3-3e4"; */

"aby-R3-3e4.text" = "Nombre";

	 11.	 Click the Main.storyboard file in the Navigator pane.

	 12.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard and ViewController.

swift file side by side.

	 13.	 Click the double circle icon at the top in the assistant editor (the

window on the right). A popup menu appears (see Figure 8-2).

	 14.	 Choose Preview ➤ Main.storyboard (Preview). Xcode displays

a preview of the Main.storyboard file in the assistant editor (the

right pane). In the bottom right corner of the assistant editor, a

Language button displays your native language such as English.

	 15.	 Click this Language button that displays your current language

(such as English). A popup menu appears (see Figure 8-3).

	 16.	 Choose French. Notice that Xcode now displays the French

translated text in the user interface as shown in Figure 8-11.

Chapter 8 Translating with Localization

213

	 17.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

�Creating a Localized String File
At this point if you run our localApp, it will always display the text “Hello”, “Date format”,

and “Number format” in the labels that appear on the user interface regardless of the iOS

device’s language preference. That’s because even though we defined what French text

to appear on the user interface through the Main.strings (French) file, we still need to

define what strings to appear when the app actually runs. The Main.strings (French) file

just lets us preview our user interface with different languages, but does not define which

foreign language words to use while the app runs.

To do this, we need to define each text to replace everywhere we defined text as

NSLocalizedString. That means we need to follow these steps:

•	 Replace text everywhere in our NSLocalizedString code to define

placeholder text to appear.

•	 Create a localized string file that defines which native language terms

to replace in the placeholder text.

•	 Create one or more additional localized string files to define which

foreign language terms to replace in the placeholder text.

Figure 8-11.  The preview pane showing French text defined in the Main.strings
(French) file

Chapter 8 Translating with Localization

214

To see how to create localized string files for each foreign language you want to

support, follow these steps:

	 1.	 Make sure the LocalApp project is loaded in Xcode.

	 2.	 Make sure you have created at least one localization file for an

additional foreign language to support such as French.

	 3.	 Choose File ➤ New ➤ File. A template dialog appears.

	 4.	 Scroll down and click the Strings File icon under the Resource

category under iOS as shown in Figure 8-12.

	 5.	 Click the Next button. A dialog appears, asking where you want to

save the file.

	 6.	 Change the file name to Localizable.strings.

Figure 8-12.  Creating a Strings File

Chapter 8 Translating with Localization

215

Figure 8-13.  The File Inspector pane for the Strings File

	 7.	 Click the Create button. Xcode adds the Localizable.strings file

to the Navigator pane and also displays a File Inspector pane as

shown in Figure 8-13.

Chapter 8 Translating with Localization

216

	 8.	 Click the Localize button in the File Inspector pane. A dialog

appears asking if you want to localize this file as shown in

Figure 8-14.

	 9.	 Click the Localize button. Xcode displays a Localization category

in the File Inspector pane. Notice that your native language check

box appears selected (such as English), while the other foreign

language check box is clear as shown in Figure 8-15.

Figure 8-14.  Xcode asks if you want to localize the Strings File

Chapter 8 Translating with Localization

217

	 10.	 Select the French check box. Xcode displays a gray disclosure

triangle to the left of Localizable.strings in the Navigator pane.

	 11.	 Click the gray disclosure triangle that appears to the left of

Localizable.strings. Notice that Xcode has now created two

Localizable.strings, one for each language you want to support as

shown in Figure 8-16.

Figure 8-15.  The Localization category in the File Inspector pane

Chapter 8 Translating with Localization

218

At this point, both .strings files are empty. What we need to do is go through our

code, put placeholder text in all NSLocalizedStrings, and define what actual text we want

to appear for each placeholder text.

The names we give our placeholder text can be any arbitrary text as long as it’s

distinct and unique. For our example, we’ll use the following placeholder text:

[GREETING]

[DATE]

[NUMBER]

We could just as easily choose the following for our placeholder text, which shows

that the placeholder text style isn’t as important as its uniqueness:

Greeting.screen1

Date.screen1

Number.screen1

To see how to display text in foreign languages in our app, follow these steps:

	 1.	 Make sure the LocalApp project is loaded in Xcode.

	 2.	 Make sure you have created at least one localization file for an

additional foreign language to support such as French.

Figure 8-16.  Xcode creates a separate .strings file for each language you want to
support in your app

Chapter 8 Translating with Localization

219

	 3.	 Make sure you have created a separate .strings file for each

language you want your app to support (such as two .strings files

for English and French).

	 4.	 Click the ViewController.swift file in the Navigator pane.

	 5.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 �greetingLabel.text = NSLocalizedString("[GREETING]", comment:

"Formal greeting")

 �dateLabel.text = NSLocalizedString("[DATE]", comment: "Date

format")

 �numberLabel.text = NSLocalizedString("[NUMBER]", comment:

"Number format")

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var greetingLabel: UILabel!

 @IBOutlet var dateLabel: UILabel!

 @IBOutlet var numberLabel: UILabel!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 �greetingLabel.text = NSLocalizedString("[GREETING]",

comment: "Formal greeting")

 �dateLabel.text = NSLocalizedString("[DATE]", comment:

"Date format")

 �numberLabel.text = NSLocalizedString("[NUMBER]",

comment: "Number format")

 }

}

Chapter 8 Translating with Localization

220

	 6.	 Click the Localizable.strings (English) file in the Navigator pane.

	 7.	 Add the following inside the Localizable.strings (English) file:

"[GREETING]" = "Hello";

"[DATE]" = "Date";

"[NUMBER]" = "Number";

Note  Make sure you put a semicolon at the end of each line or else Xcode won’t
know where the line ends and your project won’t run.

	 8.	 Click the Localizable.strings (French) file in the Navigator pane.

	 9.	 Add the following inside the Localizable.strings (French) file:

"[GREETING]" = "Bonjour";

"[DATE]" = "La Date";

"[NUMBER]" = "Nombre";

Now that we’ve defined placeholder text along with English and French words to

appear when the app runs, it’s time to test the app as if the iOS Simulator were running

in a different language. To change the language of the iOS Simulator, you need to define

a different language in the project scheme.

To change the iOS Simulator language for your app to run in, follow these steps:

	 1.	 Click the Scheme button (it displays your project’s name) that

appears in the upper left corner of the Xcode window. A popup

menu appears as shown in Figure 8-17.

Figure 8-17.  The Scheme popup menu

Chapter 8 Translating with Localization

221

	 2.	 Choose Edit Scheme. A window appears.

	 3.	 Click Options.

	 4.	 Click Run in the left pane.

	 5.	 Click the Application Language popup menu and choose the

language you want the Simulator to mimic such as French

(see Figure 8-18).

	 6.	 Click the Close button.

	 7.	 Click the Run button or choose Product ➤ Run. If you chose

French as the Application Language in step 5, then the Simulator

will load the French version of your app.

	 8.	 Choose Simulator ➤ Quit Simulator.

Figure 8-18.  The Application Language popup menu

Chapter 8 Translating with Localization

222

�Localizing Images
To localize text, we needed to insert placeholder text in our code. Then we had to

create two separate Localizable.strings files where each .strings file contained both

the placeholder text we used and its actual text we want the app to use for different

languages such as

"[GREETING]" = "Hello";

Localizing images is no different except you use placeholder text to specify a file

name to display. Then you need a different image for each language such as an image for

English and a different image for French such as

 let imageFile = NSLocalizedString("[FLAG]", comment: "National flag")

 myImageView.image = UIImage(named: imageFile)

In each language’s Localizable.strings file, you need to specify the exact file name

such as

"[FLAG]" = "usaFlag";

Now you just need an image named usaFlag in your project. You can create your own

images, have someone create one for you, or download images off the Internet. Some

free sources of images include

•	 pixnio.com

•	 publicdomainvectors.org

•	 www.pdclipart.org

Visit one of these sites and download an American flag and a French flag image and

make sure they have distinct names. For the purposes of this project, we’ll assume the

American flag image is called usaFlag.png and the French flag is called franceFlag.png.

Drag both flag images into your LocalApp project’s Navigator pane. When a dialog

appears, click Finish button. Xcode should now display the two flag images in the

Navigator pane.

To see how to display these different images in an app, follow these steps:

	 1.	 Make sure the LocalApp project is loaded into Xcode.

	 2.	 Make sure you have added two flag images into the Navigator pane.

Chapter 8 Translating with Localization

http://pixnio.com
http://publicdomainvectors.org
http://www.pdclipart.org

223

	 3.	 Click the Main.storyboard file in the Navigator pane.

	 4.	 Click the Library icon and drag and drop an Image View onto the

view as shown in Figure 8-19.

	 5.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to

Suggested Constraints in the top half of the submenu. Xcode adds

constraints to the image view.

	 6.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the Main.storyboard file and the

ViewController.swift file side by side.

Figure 8-19.  Adding an Image View to the user interface

Chapter 8 Translating with Localization

224

	 7.	 Move the mouse pointer over the image view, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 8.	 Release the Control key and the left mouse button. A popup

window appears.

	 9.	 Click in the Name text field, type flagImageView, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var flagImageView: UIImageView!

	 10.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 11.	 Add the following two lines inside the viewDidLoad method:

�let imageFile = NSLocalizedString("[FLAG]", comment: "National flag")

flagImageView.image = UIImage(named: imageFile)

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var greetingLabel: UILabel!

 @IBOutlet var dateLabel: UILabel!

 @IBOutlet var numberLabel: UILabel!

 @IBOutlet var flagImageView: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 �greetingLabel.text = NSLocalizedString("[GREETING]",

comment: "Formal greeting")

 �dateLabel.text = NSLocalizedString("[DATE]", comment:

"Date format")

 �numberLabel.text = NSLocalizedString("[NUMBER]", comment:

"Number format")

Chapter 8 Translating with Localization

225

 �let imageFile = NSLocalizedString("[FLAG]",

comment: "National flag")

 flagImageView.image = UIImage(named: imageFile)

 }

}

	 12.	 Click the Localizable.strings (English) file and add the following line:

"[FLAG]" = "usaFlag";

	 13.	 Click the Localizable.strings (French) file and add the following line:

"[FLAG]" = "franceFlag";

	 14.	 Click the Scheme button (it displays your project’s name) that

appears in the upper left corner of the Xcode window. A popup

menu appears (see Figure 8-17).

	 15.	 Choose Edit Scheme. A window appears.

	 16.	 Click Options.

	 17.	 Click Run in the left pane.

	 18.	 Click the Application Language popup menu and choose the

language you want the Simulator to mimic such as French

(see Figure 8-18).

	 19.	 Click the Close button.

	 20.	 Click the Run button or choose Product ➤ Run. If you chose

French as the Application Language in step 5, then the Simulator

will load the French version of your app and display the French

flag.

	 21.	 Repeat steps 14–20 except choose English in step 18. Notice that

when you run the app under English, the American flag image

appears on the Simulator screen.

	 22.	 Choose Simulator ➤ Quit Simulator.

Chapter 8 Translating with Localization

226

�Customizing the App Name
One final step to localization is customizing the app name. To do this, you need to create

a separate InfoPlist.strings file for each language you want to support. Then in each

InfoPlist.strings file, you define the CFBundleDisplayName value such as

"CFBundleDisplayName" = "App Name";

Whatever name you define here is what appears underneath the app’s icon when it

appears on the Home screen.

To see how to localize the name for your app, follow these steps:

	 1.	 Make sure the LocalApp project is loaded into Xcode.

	 2.	 Choose File ➤ New ➤ File. A template dialog appears.

	 3.	 Scroll down and click the Strings File icon under the Resource

category under iOS (see Figure 8-12).

	 4.	 Click the Next button. A dialog appears, asking where you want to

save the file.

	 5.	 Change the file name to InfoPlist.strings.

	 6.	 Click the Create button. Xcode adds the InfoPlist.strings file to

the Navigator pane and also displays a File Inspector pane (see

Figure 8-13).

	 7.	 Click the Localize button in the File Inspector pane. A dialog

appears asking if you want to localize this file (see Figure 8-14).

	 8.	 Click the Localize button. Xcode displays a Localization category

in the File Inspector pane. Notice that your native language check

box appears selected (such as English), while the other foreign

language check box is clear (see Figure 8-15).

	 9.	 Select the French check box. Xcode displays a gray disclosure

triangle to the left of InfoPlist.strings in the Navigator pane.

	 10.	 Click the gray disclosure triangle that appears to the left of

InfoPlist.strings. Notice that Xcode has now created two InfoPlist.

strings, one for each language you want to support.

Chapter 8 Translating with Localization

227

	 11.	 Click the InfoPlist.strings (English) file in the Navigator pane.

	 12.	 Add the following to the InfoPlist.strings (English) file:

"CFBundleName" = "$(PRODUCT_NAME)";

"CFBundleDisplayName" = "USA App";

	 13.	 Click the InfoPlist.strings (French) file in the Navigator pane.

	 14.	 Add the following to the InfoPlist.strings (French) file:

"CFBundleDisplayName" = "French App";

	 15.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

Note A lthough you have defined the French version of the app to display “French
App” as the app name on the Home screen, you must also change the language on
the Simulator (or on a real iOS device) to make the app name change.

	 16.	 Choose Hardware ➤ Home to display the Home screen on the

Simulator.

	 17.	 Click the Settings icon.

	 18.	 Click General.

	 19.	 Click Language & Region.

	 20.	 Click iPhone Language. A list of languages appears.

	 21.	 Choose French and then click Done. Notice that now your app

displays “French App” on the Home screen. You may want to

repeat steps 17–21 to change the Simulator’s language back to

your native language again.

	 22.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Chapter 8 Translating with Localization

228

�Formatting Numbers and Dates
Every region tends to display numbers and dates in different ways. To make your app

format data such as numbers and dates based on the user’s language and region, use

Apple’s various Formatters such as NumberFormatter or DateFormatter.

Apple’s various formatters can automatically adjust the appearance of data based

on the iOS device’s language and region. Your app just needs to calculate the data to

appear on the user interface. To learn more about the different formatters available, read

Apple’s documentation (https://developer.apple.com/documentation/foundation/

formatter).

The basic step to using a formatter involves choosing which formatter to use such as

let formatter = DateFormatter()

Then define one or more settings for how to format the information such as

formatter.dateStyle = .full

Finally, use the formatter to convert the data such as

let myDate = formatter.string(from: Date())

To see how to use formatters to display data in different languages and regions,

follow these steps:

	 1.	 Make sure the LocalApp project is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the navigator pane.

	 3.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 let formatter = DateFormatter()

 formatter.dateStyle = .full

 let myDate = formatter.string(from: Date())

 let formatter2 = NumberFormatter()

 formatter2.numberStyle = .currency

 let myMoney = formatter2.string(from: 123456)

Chapter 8 Translating with Localization

https://developer.apple.com/documentation/foundation/formatter
https://developer.apple.com/documentation/foundation/formatter

229

 �greetingLabel.text = NSLocalizedString("[GREETING]",

comment: "Formal greeting")

 �dateLabel.text = NSLocalizedString("\(myDate)", comment:

"Date format")

 �numberLabel.text = NSLocalizedString("\(myMoney!)",

comment: "Number format")

 �let imageFile = NSLocalizedString("[FLAG]", comment:

"National flag")

 flagImageView.image = UIImage(named: imageFile)

}

To see the differences in how the formatters work, we need to run

our app as if we’re in a different region of the world. So not only

can we set the language for the Simulator to use, but we can also

define the region for the Simulator to mimic.

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var greetingLabel: UILabel!

 @IBOutlet var dateLabel: UILabel!

 @IBOutlet var numberLabel: UILabel!

 @IBOutlet var flagImageView: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 let formatter = DateFormatter()

 formatter.dateStyle = .full

 let myDate = formatter.string(from: Date())

 let formatter2 = NumberFormatter()

 formatter2.numberStyle = .currency

 let myMoney = formatter2.string(from: 123456)

Chapter 8 Translating with Localization

230

 �greetingLabel.text = NSLocalizedString("[GREETING]",

comment: "Formal greeting")

 �dateLabel.text = NSLocalizedString("\(myDate)", comment:

"Date format")

 �numberLabel.text = NSLocalizedString("\(myMoney!)",

comment: "Number format")

 �let imageFile = NSLocalizedString("[FLAG]", comment:

"National flag")

 flagImageView.image = UIImage(named: imageFile)

 }

}

	 4.	 Click the Scheme button (it displays your project’s name) that

appears in the upper left corner of the Xcode window. A popup

menu appears (see Figure 8-17).

	 5.	 Choose Edit Scheme. A window appears.

	 6.	 Click Options.

	 7.	 Click Run in the left pane.

	 8.	 Click the Application Language popup menu and choose the

language you want the Simulator to mimic such as French

(see Figure 8-18).

	 9.	 Click the Application Region popup menu and choose a different

region such as France as shown in Figure 8-20.

Chapter 8 Translating with Localization

231

	 10.	 Click the Close button.

	 11.	 Click the Run button or choose Product ➤ Run. If you chose

French as the Application Language and France as the Application

Region, then the Simulator will load the French version of your

app and display the date and currency as shown in Figure 8-21.

Figure 8-20.  Choosing a region for the Simulator to mimic

Figure 8-21.  The French version of the app displays dates and currency in French
format

Chapter 8 Translating with Localization

232

	 12.	 Choose Simulator ➤ Quit Simulator.

	 13.	 Repeat steps 5–10 except choose English as the language and the

United States as the region. Notice that when you run the app

under English, the date and currency appear in the format familiar

to America as shown in Figure 8-22.

	 14.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Summary
Creating an app in your native language may be fine, but if you want to reach other

markets, you need to translate the text of your app into other languages. By using Xcode’s

preview feature, you can mimic other languages to make sure your user interface adapts

to longer or shorter text. You can also display text in other languages to see how specific

foreign words and phrases will look on your app’s user interface.

Once you’ve defined the layout of your user interface and added constraints through

Auto Layout, you can define all text in your app as NSLocalizedStrings. Then you can

create a list of equivalent text to appear wherever your code finds an NSLocalizedString.

You’ll need to create a different file for each language you want your app to support.

Figure 8-22.  The English version of the app displays dates and currency in
American format

Chapter 8 Translating with Localization

233

Finally, don’t forget that some languages and regions display data differently such

as dates and numbers. Use a formatter to let your app adapt automatically to different

regional differences. You can simulate different languages and regions by changing the

scheme of your app before running it in the Simulator.

Creating an app can be hard work, so it only makes sense to distribute your app as

broadly as possible so it can reach as many people as possible.

Chapter 8 Translating with Localization

235
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_9

CHAPTER 9

Using 3D Touch
When Apple introduced the iPhone, smartphones often displayed rows of buttons or

sported keyboards that folded or flipped out. Having to display so many buttons meant

that the smartphone couldn’t display much of the screen. Fortunately, the iPhone

changed the smartphone world when they introduced the touch screen interface.

Instead of crowding the smartphone with physical buttons, the touch screen interface

displayed a single screen that could offer virtual buttons.

Such virtual buttons meant the screen could adapt to the user’s needs. If you were

typing an e-mail message, the virtual keyboard could display characters to type. If you

were browsing the Internet, the virtual keyboard could display commonly used keys

such as the @ symbol or the .com extension. Virtual keyboards made the iPhone far

more versatile than older smartphones that relied on physical buttons.

The touch screen interface of the iPhone initially focused on taps and gestures.

Tapping an icon on the screen would select it, while swiping on that same icon might

make it move or slide away. While useful, such two-dimensional interaction can be

limiting. That’s why the latest iPhones offer a third way to interact with the touch screen

called 3D Touch.

The idea behind 3D Touch is to add a third dimension to interaction with the touch

screen: pressure. By pressing your finger on an icon for an extended period of time,

3D Touch can display shortcuts. By adding support for 3D Touch, your app can take

advantage of the iPhone’s latest touch gestures.

Note  Only the iPhone 6s and later support 3D Touch with the exception of the
iPhone Xr. The iPad does not support 3D Touch.

236

�Understanding 3D Touch
3D Touch first appeared on the iPhone 6s and has been a standard feature of every

iPhone (with the exception of the iPhone Xr) since then. The two most common ways

to interact with 3D Touch are from the Home screen and from within your app itself. 3D

Touch works by detecting the amount of pressure a user places on the touch screen.

When you use 3D Touch from the Home screen, a popup menu appears, listing

several common actions you’re most likely to want from that app. This popup menu can

display shortcuts, called Quick Actions, that consist of up to two lines of text and an icon

as shown in Figure 9-1.

By tapping on a Quick Action, users can immediately access common features of an

app. The second common way to use 3D Touch is within an app itself, which can involve

three steps:

•	 Peek availability

•	 Peek

•	 Peek quick actions

Figure 9-1.  3D Touch can display Quick Actions

Chapter 9 Using 3D Touch

237

When you first press on an item within an app, peek availability blurs the

surrounding screen to show you that it supports 3D Touch as shown in Figure 9-2.

Once an app reveals that it supports 3D Touch through blurring the screen, the user

can continue pressing to peek at more detailed information in a window that doesn’t

quite fill up the screen. This Peek action lets you view information without taking the

time to open it as shown in Figure 9-3.

Figure 9-2.  Peek availability blurs the surrounding area to show that the app
supports 3D Touch

Chapter 9 Using 3D Touch

238

If you release your finger from the screen, this Peek information will disappear.

However, if you swipe up, a menu of Peek Quick Actions appears at the bottom of the

screen. This lets you perform common actions without opening the data within the

app. At this point, the user can stop touching the screen to tap on one of the Peek Quick

Actions as shown in Figure 9-4.

Figure 9-3.  Peek lets you view information without opening it fully in an app

Chapter 9 Using 3D Touch

239

To make this Peek Quick Action menu go away, the user can tap the top of the screen.

�Detecting 3D Touch Availability
Since your app may be used on an iPad, iPhone Xr, or iPhone model earlier than the

iPhone 6s, your app must first check if a device supports 3D Touch or not. To see how 3D

Touch works, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

3DTouchApp.

	 2.	 Click the ViewController.swift file in the Navigator pane.

Figure 9-4.  A Peek Quick Action menu lets the user choose a common action for
the displayed data

Chapter 9 Using 3D Touch

240

	 3.	 Add the following underneath the viewDidLoad method:

override func touchesMoved(_ touches: Set<UITouch>, with event:

UIEvent?) {

 if touches.first != nil {

 if #available(iOS 9.0, *) {

 �if traitCollection.forceTouchCapability ==

UIForceTouchCapability.available {

 print ("3D Touch available!")

 } else {

 print ("3D Touch not available")

 }

 } else {

 print ("Need iOS 9 or higher")

 }

 }

}

This code first detects a touch and then checks if the device is

running iOS 9 or higher. That’s because 3D Touch is only supported

by iOS 9 and higher. The next if statement checks if 3D Touch

capability is available. If 3D Touch is available and the device is

running iOS 9 or higher, then the preceding code prints “3D Touch

available!” It’s best to ensure a device can support 3D Touch to avoid

possible crashes.

Note  To test 3D Touch in the Simulator, you need a Magic Trackpad that’s either
built-in to a Macintosh laptop or a separate accessory that works with a desktop
Macintosh.

	 4.	 Click the Scheme button in the upper left corner of the Xcode

window and choose iPhone 8 as shown in Figure 9-5.

Figure 9-5.  Choosing an iPhone 8 in the Scheme button

Chapter 9 Using 3D Touch

241

	 5.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 6.	 Choose Hardware ➤ Touch Pressure and make sure a check mark

appears in front of Use Trackpad Force as shown in Figure 9-6.

	 7.	 Move the mouse pointer over the Simulator screen and press and

hold down on the trackpad to simulate a 3D Touch. Notice that the

debug area in Xcode displays the message “3D Touch is available!”

	 8.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

	 9.	 Click the Scheme button in the upper left corner of the Xcode

window and choose iPhone Xr.

Figure 9-6.  Choosing Use Trackpad Force if you have a Magic Trackpad with your
Macintosh

Chapter 9 Using 3D Touch

242

	 10.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 11.	 Move the mouse pointer over the Simulator screen and press and

hold down on the trackpad to simulate a 3D Touch. Notice that the

debug area in Xcode now displays the message “3D Touch is not

available!”

	 12.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

	 13.	 Click the Scheme button in the upper left corner of the Xcode

window and choose iPhone 8 so you can continue testing 3D

Touch in the Simulator.

�Detecting Pressure
Once you know that a device offers 3D Touch, you may want to detect the pressure from

the user pressing down on the screen. To simulate 3D Touch, you need to run your app

on one of the following:

•	 In the Simulator running on a laptop Macintosh with a touch pad or a

desktop Macintosh with a Magic Trackpad

•	 On an iPhone 6s or later (except for an iPhone Xr) connected to a

Macintosh through its USB cable

The two properties for detecting the pressure of 3D Touch includes “force” and

“maximumPossibleForce”. The force property measures the current amount of pressure,

while the maximumPossibleForce property defines the maximum pressure iOS can

recognize.

To see how to detect pressure with 3D Touch, follow these steps:

	 1.	 Make sure the 3DTouchApp project is loaded into Xcode.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a label onto the view.

You may want to expand the width of the label.

Chapter 9 Using 3D Touch

243

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the label.

	 5.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 6.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 7.	 Release the Control key and the left mouse button. A popup

window appears.

	 8.	 Click in the Name text field, type forceLabel, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var forceLabel: UILabel!

	 9.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 10.	 Click the ViewController.swift file in the Navigator pane.

	 11.	 Edit the touchesMoved function as follows:

�override func touchesMoved(_ touches: Set<UITouch>, with event:

UIEvent?) {

if touches.first != nil {

 if #available(iOS 9.0, *) {

 �if traitCollection.forceTouchCapability ==

UIForceTouchCapability.available {

 //print ("3D Touch available!")

 let touch = touches.first

 �let force = Float(touch!.force)/Float(touch!.

maximumPossibleForce)

 forceLabel.text = "\(force * 100)% force"

Chapter 9 Using 3D Touch

244

 } else {

 print ("3D Touch not available")

 }

 } else {

 print ("Need iOS 9 or higher")

 }

}

}

Once we know that 3D Touch is available (touches.first is not

nil), then we can assign a constant “touch” to represent the value

stored in touches.first. Then we divide the force of the touch by the

maximumPossibleForce to get a numeric result (converted into

Float data types). Finally, we display this force, multiplied by 100

to show a percentage, in the label on the user interface.

	 12.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 13.	 Click the Simulator screen with a trackpad press down. The

Simulator screen displays the amount of force as shown in

Figure 9-7.

Chapter 9 Using 3D Touch

245

	 14.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Creating Home Screen Quick Actions
Quick Actions give the user the option of opening an app using different options.

For example, when you use Quick Actions on the Safari icon on the Home screen, you’ll

have the option of opening a new tab, a privacy tab, a reading list, or a list of bookmarks

(see Figure 9-1). Quick Actions provide shortcuts to commonly used features in an app.

There are two parts to creating Quick Actions. First, you need to create a menu of up

to four Quick Actions by defining multiple strings in a dictionary stored in the info.plist

file. Each Quick Action can display a title, a subtitle, and an icon. Second, you need to

write Swift code in a method to handle every Quick Action.

Figure 9-7.  Detecting the amount of pressure from a 3D Touch

Chapter 9 Using 3D Touch

246

To see how to create Home screen Quick Actions, follow these steps:

	 1.	 Make sure the 3DTouchApp project is loaded into Xcode.

	 2.	 Click the Info.plist file in the Navigator pane.

	 3.	 Click the mouse pointer over the up/down arrow icons that

appear to the right of any key item in the property list. A + and

a – icon appears to the right of the up/down arrow as shown in

Figure 9-8.

	 4.	 Click the + icon to create a new property list item. Xcode creates a

new property list item.

	 5.	 Click in the new property list item key column, type

UIApplicationShortcutItems, and press Enter.

	 6.	 Click the popup menu in the Type column and choose Array as

shown in Figure 9-9.

Figure 9-8.  Clicking on the up/down arrows displays a + and – icon

Chapter 9 Using 3D Touch

247

	 7.	 Click the + icon to create a new property list item and name this

Item 0 with a Type of Dictionary.

	 8.	 Click the + icon to create a new property list item and name this

Item 1 with a Type of Dictionary.

	 9.	 Right-click Item 0. A popup menu appears as shown in Figure 9-10.

	 10.	 Choose Shift Row Right. Xcode indents Item 0 under the

UIApplicationShortcutItems key.

Figure 9-9.  Defining a new property list item as UIApplicationShortcutItems as
an Array type

Figure 9-10.  Indenting a row in the Info.plist file

Chapter 9 Using 3D Touch

248

	 11.	 Right-click Item 1. A popup menu appears (see Figure 9-10).

	 12.	 Choose Shift Row Right. Xcode indents Item 1 under the

UIApplicationShortcutItems key.

	 13.	 Create three additional rows under Item 0 and Item 1 and shift

them to the right so they appear indented under each item.

	 14.	 Name these three rows under each item as follows:

•	 UIApplicationShortcutItemTitle – Defines the Quick Action

shortcut title (required)

•	 UIApplicationShortcutItemSubtitle – Defines the Quick Action

shortcut subtitle that appears in a smaller font size under the title

text (optional)

•	 UIApplicationShortcutItemType – Defines a required string to

create a Quick Action shortcut menu (required)

For our 3D Touch app, we’ll just create two Quick Action shortcuts to create nine new

rows in the Information Property List that looks like the following table and Figure 9-11:

Key Type Value

UIApplicationShortcutItems Array (2 items)

 Item 0 Dictionary (3 items)

 UIApplicationShortcutItemTitle String View

 UIApplicationShortcutItemSubtitle String View favorite items

 UIApplicationShortcutItemType String $(PRODUCT_BUNDLE_IDENTIFIER).First

 Item 1 Dictionary (3 items)

 UIApplicationShortcutItemTitle String Share

 UIApplicationShortcutItemSubtitle String Share items with friends

 UIApplicationShortcutItemType String $(PRODUCT_BUNDLE_IDENTIFIER).Second

Chapter 9 Using 3D Touch

249

Note  Use a real iPhone that supports 3D Touch to test your app.

	 15.	 Connect an iPhone that supports 3D Touch to your Macintosh

through a USB cable.

	 16.	 Click the Scheme button in the upper left corner of the Xcode

window and choose the iPhone connected to your Macintosh as

shown in Figure 9-12.

	 17.	 Click the Run button or choose Product ➤ Run. The 3DTouchApp

appears on your iPhone.

	 18.	 Press the Home button or swipe up from the bottom of the screen

to return back to the Home screen.

	 19.	 Press firmly on the 3DTouchApp icon on the Home screen. The

Quick Action shortcut menu appears as shown in Figure 9-13.

Figure 9-11.  Defining Quick Action shortcuts in the Information Property List

Figure 9-12.  You must choose an actual iOS device that supports 3D Touch to test
your app

Chapter 9 Using 3D Touch

250

	 20.	 Click the Stop button in Xcode to stop running the app.

If you notice the Quick Action menu, the title appears in large

font and the subtitle appears in a smaller font. However, you

may notice a black dot. This is where you can define an icon to

appear. Apple provides icons to represent common tasks such as

sharing, adding, or choosing a favorite item. To view a complete

list of available icons, visit https://developer.apple.com/

documentation/uikit/uiapplicationshortcuticontype.

	 21.	 Click the Info.plist file in the Navigator pane.

	 22.	 Create an additional row under Item 0 and Item

1 for each Quick Action shortcut that defines

UIApplicationShortcutItemIconType. Then define this as

an icon using UIApplicationShortcutIconTypeFavorite and

UIApplicationShortcutIconTypeShare as shown in Figure 9-14.

Figure 9-13.  Quick Action shortcuts appear next to the icon

Chapter 9 Using 3D Touch

https://developer.apple.com/documentation/uikit/uiapplicationshortcuticontype
https://developer.apple.com/documentation/uikit/uiapplicationshortcuticontype

251

Note  Make sure you spell everything (including uppercase and lowercase letters)
exactly right. Be especially careful when defining an icon type. Under the Key
column heading, you must use UIApplicationShortcutItemIconType (UI Application
Shortcut Item Icon Type) but under the Value column heading, you need to use
UIApplicationShortcutIconType (UI Application Shortcut Icon Type) followed by the
icon name you want to use such as Share or Favorite.

	 23.	 Make sure your project will run on an iPhone connected to your

Macintosh. Then click the Run button or choose Product ➤ Run.

The 3DTouchApp’s screen appears on the iPhone.

	 24.	 Press the Home button or swipe up from the bottom of the screen

to return back to the Home screen.

	 25.	 Press firmly on the 3DTouchApp icon on the Home screen. The

Quick Action shortcut menu appears with icons as shown in

Figure 9-15.

Figure 9-14.  Adding icons to the Quick Action menu items

Chapter 9 Using 3D Touch

252

	 26.	 Click the Stop button in Xcode to stop running the app.

�Responding to Quick Action Items
Once you’ve created a list of Quick Action menu items, the last step is to write Swift code

to respond to the Quick Action the user chose. To do that, you need to write Swift code in

the AppDelegate.swift file of your project. The AppDelegate.swift file needs to contain an

enumeration that identifies each Quick Action item with a descriptive name.

There are two parts to creating an enumeration. First, you must create an

enumeration that has an equal number of Quick Actions you want to display. So if

you want to respond to four Quick Actions, you must have four items defined in the

enumeration.

Figure 9-15.  Displaying icons in the Quick Action menu items

Chapter 9 Using 3D Touch

253

In our project, we just have two Quick Action menu items, so our enumeration only

needs to define two items like this:

 enum MenuItems: String {

 case First

 case Second

 }

The exact name of your enumeration is arbitrary (such as MenuItems). Also the

name you give for each item in the enumeration is also arbitrary (First and Second).

Next, we need to initialize the enumeration items using the following code as part of the

enumeration:

 enum MenuItems: String {

 case First

 case Second

 init?(fullType: String) {

 �guard let last = fullType.components(separatedBy: ".").last

else { return nil }

 self.init(rawValue: last)

 }

 var type: String {

 return Bundle.main.bundleIdentifier! + ".\(self.rawValue)"

 }

 }

To respond to Quick Action items, we need a variable of the type

UIApplicationShortcutItem in the AppDelegate.swift file like this:

var launchedShortcutItem: UIApplicationShortcutItem?

The AppDelegate.swift file needs two application functions. The first application

function runs when the user selects a Quick Action item. This function stores the

selected Quick Action selection in the launchedShortcutItem variable like this:

 �func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

Chapter 9 Using 3D Touch

254

 �if let shortcutItem = launchOptions?[UIApplication.

LaunchOptionsKey.shortcutItem] as? UIApplicationShortcutItem {

 launchedShortcutItem = shortcutItem

 }

 return true

 }

The second application function does nothing more than call a function to handle

the completion of the user choosing a Quick Action item:

 �func application(_ application: UIApplication, performActionFor

shortcutItem: UIApplicationShortcutItem, completionHandler: @escaping

(Bool) -> Void) {

 completionHandler(handleShortCutItem(shortcutItem))

 }

The preceding function calls a function called handleShortCutItem (this name is

arbitrary and can be anything you want to call it). This handleShortCutItem function

does the actual work of deciding how to respond to which Quick Action item the user

chose.

Now we need to write the handleShortCutItem function to respond to the Quick

Action the user chose. There are two ways to identify the user’s chosen Quick Action.

One way is to identify the choice defined by the enumeration. The second way is to

identify the localizedTitle property, which identifies the UIApplicationShortcutItemTitle

for the Quick Action shortcut you defined in the Info.plist file.

However you want to identify the Quick Action the user chose, you’ll likely need

a switch statement to identify the chosen Quick Action and then respond to it. In our

project, we’ll just identify the Quick Action chosen. Add the handleShortCutItem

function to the AppDelegate.swift file as follows:

 �func handleShortCutItem(_ shortcutItem: UIApplicationShortcutItem) ->

Bool {

 var handled = false

 guard MenuItems(fullType: shortcutItem.type) != nil else {

 return false

 }

Chapter 9 Using 3D Touch

255

 guard let shortCutType = shortcutItem.type as String? else {

 return false

 }

 switch (shortCutType) {

 case MenuItems.First.type:

 print ("View favorites")

 handled = true

 case MenuItems.Second.type:

 print ("Share")

 handled = true

 default:

 break

 }

 �let alertController = UIAlertController(title: "Shortcut Chosen",

message: "\"\(shortcutItem.localizedTitle)\"", preferredStyle:

.alert)

 �let okAction = UIAlertAction(title: "OK", style: .default,

handler: nil)

 alertController.addAction(okAction)

 �window!.rootViewController?.present(alertController, animated:

true, completion: nil)

 return handled

 }

First, we need to declare a Boolean variable called handled and set it to false.

Then we have two guard statements to ensure that a Quick Action was actually

chosen. The switch statement identifies the chosen Quick Action by its enumeration

value. Then an alert dialog appears to display the chosen Quick Action by its

UIApplicationShortcutItemTitle value.

To see how to respond to Quick Action items, follow these steps:

	 1.	 Make sure the 3DTouchApp project is loaded into Xcode.

	 2.	 Click the AppDelegate.swift file in the Navigator pane.

	 3.	 Modify the AppDelegate.swift file so it appears like this:

Chapter 9 Using 3D Touch

256

import UIKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {

 enum MenuItems: String {

 case First

 case Second

 init?(fullType: String) {

 �guard let last = fullType.components(separatedBy:

".").last else { return nil }

 self.init(rawValue: last)

 }

 var type: String {

 �return Bundle.main.bundleIdentifier! + ".\(self.rawValue)"

 }

 }

 var window: UIWindow?

 var launchedShortcutItem: UIApplicationShortcutItem?

 �func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 �if let shortcutItem = launchOptions?[UIApplication.

LaunchOptionsKey.shortcutItem] as?

UIApplicationShortcutItem {

 launchedShortcutItem = shortcutItem

 }

 return true

 }

 �func application(_ application: UIApplication,

performActionFor shortcutItem: UIApplicationShortcutItem,

completionHandler: @escaping (Bool) -> Void) {

Chapter 9 Using 3D Touch

257

 completionHandler(handleShortCutItem(shortcutItem))

 }

 �func handleShortCutItem(_ shortcutItem:

UIApplicationShortcutItem) -> Bool {

 var handled = false

 guard MenuItems(fullType: shortcutItem.type) != nil else {

 return false

 }

 guard let shortCutType = shortcutItem.type as String? else {

 return false

 }

 switch (shortCutType) {

 case MenuItems.First.type:

 print ("View favorites")

 handled = true

 case MenuItems.Second.type:

 print ("Share")

 handled = true

 default:

 break

 }

 �let alertController = UIAlertController(title: "Shortcut

Chosen", message: "\"\(shortcutItem.localizedTitle)\"",

preferredStyle: .alert)

 �let okAction = UIAlertAction(title: "OK", style: .default,

handler: nil)

 alertController.addAction(okAction)

 �window!.rootViewController?.present(alertController,

animated: true, completion: nil)

 return handled

 }

Chapter 9 Using 3D Touch

258

 func applicationWillResignActive(_ application: UIApplication) {

 }

 func applicationDidEnterBackground(_ application: UIApplication) {

 }

 func applicationWillEnterForeground(_ application: UIApplication) {

 }

 func applicationDidBecomeActive(_ application: UIApplication) {

 }

 func applicationWillTerminate(_ application: UIApplication) {

 }

}

	 4.	 Make sure your project will run on an iPhone connected to your

Macintosh. Then click the Run button or choose Product ➤ Run.

The 3DTouchApp’s screen appears on the iPhone.

	 5.	 Press the Home button or swipe up from the bottom of the screen

to return back to the Home screen.

	 6.	 Press firmly on the 3DTouchApp icon on the Home screen. The

Quick Action shortcut menu appears with icons (see Figure 9-15).

	 7.	 Tap on a Quick Action item. An alert dialog appears, displaying

your chosen Quick Action by its UIApplicationShortcutItemTitle

value as shown in Figure 9-16.

Chapter 9 Using 3D Touch

259

	 8.	 Tap OK to make the alert dialog go away.

	 9.	 Click the Stop button in Xcode.

�Adding Dynamic Home Screen Quick Actions
The two Quick Actions we defined so far are known as static actions because they appear

all the time. A second type of Quick Action is known as Dynamic Quick Actions, which

you can create in Swift code to appear after your app is already running. This allows the

Quick Action menu to display different options depending on what the user might be

doing at the moment.

Figure 9-16.  An alert dialog shows the Quick Action shortcut the user chose

Chapter 9 Using 3D Touch

260

Note R emember, you can only have a maximum of four Quick Actions such
as one static Quick Action and three Dynamic Quick Actions or four static Quick
Actions and zero Dynamic Quick Actions.

To add Dynamic Quick Actions, you must modify the enumeration for each Dynamic

Quick Action you want to add. In our project, we had two items in our enumeration so

we need to add two more for the two Dynamic Quick Actions we want to add such as

 enum MenuItems: String {

 case First

 case Second

 case Third

 case Fourth

 init?(fullType: String) {

 �guard let last = fullType.components(separatedBy: ".").last

else { return nil }

 self.init(rawValue: last)

 }

 var type: String {

 return Bundle.main.bundleIdentifier! + ".\(self.rawValue)"

 }

 }

Note  The Quick Action defined by the top enumeration value will appear at the
bottom of the Quick Action menu. So the Quick Action defined by Fourth will appear
at the top, the one defined by Third will appear second, the one defined by Second
will appear third, and the one defined by First will appear at the bottom as shown
in Figure 9-17.

Chapter 9 Using 3D Touch

261

Now we need to modify the existing application didFinishLaunchingWithOptions

functions in two ways. First, we need to define each Dynamic Quick Action by identifying

its place in the enumeration list (such as Third and Fourth) and giving it a localizedTitle

and localizedSubtitle and a corresponding icon (UIApplicationShortcutIcon) such as

 �if let shortcutItems = application.shortcutItems, shortcutItems.

isEmpty {

 �let shortcut3 = UIMutableApplicationShortcutIt

em(type: MenuItems.Third.type, localizedTitle:

"Play", localizedSubtitle: "Play audio", icon:

UIApplicationShortcutIcon(type: .play)

)

Figure 9-17.  Displaying the Quick Action menu with a maximum of four items

Chapter 9 Using 3D Touch

262

 �let shortcut4 = UIMutableApplicationShortcutIte

m(type: MenuItems.Fourth.type, localizedTitle:

"Add", localizedSubtitle: "Add an item", icon:

UIApplicationShortcutIcon(type: .add)

)

 �// Update the application providing the initial "dynamic"

shortcut items

 application.shortcutItems = [shortcut3, shortcut4]

 }

To see how to add Dynamic Quick Action items, follow these steps:

	 1.	 Make sure the 3DTouchApp project is loaded into Xcode.

	 2.	 Click the AppDelegate.swift file in the Navigator pane.

	 3.	 Modify the AppDelegate.swift file so it appears like this:

import UIKit

@UIApplicationMain

class AppDelegate: UIResponder, UIApplicationDelegate {

 enum MenuItems: String {

 case First

 case Second

 case Third

 case Fourth

 init?(fullType: String) {

 �guard let last = fullType.components(separatedBy:

".").last else { return nil }

 self.init(rawValue: last)

 }

 var type: String {

 return Bundle.main.bundleIdentifier! + ".\(self.rawValue)"

 }

 }

Chapter 9 Using 3D Touch

263

 var window: UIWindow?

 var launchedShortcutItem: UIApplicationShortcutItem?

 �func application(_ application: UIApplication,

didFinishLaunchingWithOptions launchOptions: [UIApplication.

LaunchOptionsKey: Any]?) -> Bool {

 �// If a shortcut was launched, display its information and

take the appropriate action

 �if let shortcutItem = launchOptions?[UIApplication.

LaunchOptionsKey.shortcutItem] as?

UIApplicationShortcutItem {

 launchedShortcutItem = shortcutItem

 }

 // Install our two extra dynamic Quick Action items

 �if let shortcutItems = application.shortcutItems,

shortcutItems.isEmpty {

 �let shortcut3 = UIMutableApplicationShortcutIt

em(type: MenuItems.Third.type, localizedTitle:

"Play", localizedSubtitle: "Play audio", icon:

UIApplicationShortcutIcon(type: .play)

)

 �let shortcut4 = UIMutableApplicationShortcutIte

m(type: MenuItems.Fourth.type, localizedTitle:

"Add", localizedSubtitle: "Add an item", icon:

UIApplicationShortcutIcon(type: .add)

)

 �// Update the application providing the initial

"dynamic" shortcut items

 application.shortcutItems = [shortcut3, shortcut4]

 }

 return true

 }

Chapter 9 Using 3D Touch

264

 �func application(_ application: UIApplication,

performActionFor shortcutItem: UIApplicationShortcutItem,

completionHandler: @escaping (Bool) -> Void) {

 completionHandler(handleShortCutItem(shortcutItem))

 }

 �func handleShortCutItem(_ shortcutItem:

UIApplicationShortcutItem) -> Bool {

 var handled = false

 guard MenuItems(fullType: shortcutItem.type) != nil else {

 return false

 }

 guard let shortCutType = shortcutItem.type as String? else {

 return false

 }

 switch (shortCutType) {

 case MenuItems.First.type:

 print ("View favorites")

 handled = true

 case MenuItems.Second.type:

 print ("Share")

 handled = true

 default:

 break

 }

 �let alertController = UIAlertController(title: "Shortcut

Chosen", message: "\"\(shortcutItem.localizedTitle)\"",

preferredStyle: .alert)

 �let okAction = UIAlertAction(title: "OK", style: .default,

handler: nil)

 alertController.addAction(okAction)

 �window!.rootViewController?.present(alertController,

animated: true, completion: nil)

Chapter 9 Using 3D Touch

265

 return handled

 }

 func applicationWillResignActive(_ application: UIApplication) {

 }

 func applicationDidEnterBackground(_ application: UIApplication) {

 }

 func applicationWillEnterForeground(_ application: UIApplication) {

 }

 func applicationDidBecomeActive(_ application: UIApplication) {

 }

 func applicationWillTerminate(_ application: UIApplication) {

 }

}

	 4.	 Make sure your project will run on an iPhone connected to your

Macintosh. Then click the Run button or choose Product ➤ Run.

The 3DTouchApp’s screen appears on the iPhone.

	 5.	 Press the Home button or swipe up from the bottom of the screen

to return back to the Home screen.

	 6.	 Press firmly on the 3DTouchApp icon on the Home screen. The

Quick Action shortcut menu appears with icons (see Figure 9-15).

	 7.	 Tap on a Quick Action item. An alert dialog appears, displaying

your chosen Quick Action by its UIApplicationShortcutItemTitle

value (see Figure 9-16).

	 8.	 Tap OK to make the alert dialog go away.

	 9.	 Click the Stop button in Xcode.

Chapter 9 Using 3D Touch

266

�Adding Peeking, Popping, and Previewing
The final use of 3D Touch is to add peeking to our project. Peeking lets the user press

on an item to focus just on that item (see Figure 9-2). Holding a finger over that item

pops up a new view of itself in a smaller form (see Figure 9-3). Previewing lets you view a

menu of items to perform a task of some kind (see Figure 9-4).

Peeking and popping involve two different views. The first view displays an item, and

when the user presses on an item, a second view pops up. Because you’re working with

two different views, you need to write code in the view controller files connected to each

view (such as ViewController.swift).

To see how peeking, popping, and previewing work, follow these steps:

	 1.	 Create a new Single View App iOS project and name it

3DPeekPopApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a button in the middle of

the view.

	 4.	 Double-click the button, type Touch Me to Peek, and press Enter.

	 5.	 Choose View ➤ Inspectors ➤ Show Attributes inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 6.	 Click the Background popup menu and choose a distinctive color

such as yellow or orange to make the button easier to see.

	 7.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the button. The user

interface should look similar to Figure 9-18.

Chapter 9 Using 3D Touch

267

	 8.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard and ViewController.

swift file side by side.

	 9.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 10.	 Release the Control key and the left mouse button. A popup

window appears.

	 11.	 Click in the Name text field, type peekButton, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var peekButton: UIButton!

Figure 9-18.  The initial user interface of the 3DPeekPopApp project

Chapter 9 Using 3D Touch

268

	 12.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 13.	 Click the ViewController.swift file in the Navigator pane.

	 14.	 Edit the viewDidLoad method as follows to make sure 3D Touch is

available:

override func viewDidLoad() {

 super.viewDidLoad()

 if traitCollection.forceTouchCapability == .available {

 registerForPreviewing(with: self, sourceView: view)

 }

}

	 15.	 Edit the class ViewController line as follows:

class ViewController: UIViewController,

UIViewControllerPreviewingDelegate {

The UIViewControllerPreviewingDelegate requires two

previewingContext functions to work. The first function runs when

the user first presses down on an item. This function must identify

a second view to appear and verify that the user pressed within on

an item such as our UIButton. Then this function needs to define a

smaller size for displaying the second view.

	 16.	 Add the following function to the ViewController.swift file:

�func previewingContext(_ previewingContext:

UIViewControllerPreviewing, viewControllerForLocation location:

CGPoint) -> UIViewController? {

 �guard let showMyView = storyboard?.instantiateViewController(withI

dentifier: "PeekVC"), peekButton.frame.contains(location) else {

 return nil

 }

 showMyView.preferredContentSize = CGSize(width: 0.0, height: 300.0)

 return showMyView

 }

Chapter 9 Using 3D Touch

269

Note that the second view (which we haven’t created yet) needs a

Storyboard ID of “PeekVC”.

	 17.	 Add the following function to the ViewController.swift file:

�func previewingContext(_ previewingContext:

UIViewControllerPreviewing, commit viewControllerToCommit:

UIViewController) {

 show(viewControllerToCommit, sender: self)

}

The complete code for the ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController,

UIViewControllerPreviewingDelegate {

 @IBOutlet var peekButton: UIButton!

 override func viewDidLoad() {

 super.viewDidLoad()

 if traitCollection.forceTouchCapability == .available {

 registerForPreviewing(with: self, sourceView: view)

 }

 }

 �func previewingContext(_ previewingContext:

UIViewControllerPreviewing, viewControllerForLocation

location: CGPoint) -> UIViewController? {

 �guard let showMyView = storyboard?.instantiateViewCon

troller(withIdentifier: "PeekVC"), peekButton.frame.

contains(location) else {

 return nil

 }

 �showMyView.preferredContentSize = CGSize(width: 0.0,

height: 300.0)

 return showMyView

 }

Chapter 9 Using 3D Touch

270

 �func previewingContext(_ previewingContext:

UIViewControllerPreviewing, commit viewControllerToCommit:

UIViewController) {

 show(viewControllerToCommit, sender: self)

 }

}

	 18.	 Click the Main.storyboard file in the Navigator pane.

	 19.	 Click the Library icon and drag and drop a View Controller next to

the existing view.

	 20.	 Click the Library icon and drag and drop a label near the top of

this new view controller.

	 21.	 Resize the label. Double-click the label, type Touch Me to Peek,

and press Enter.

	 22.	 Choose View ➤ Inspectors ➤ Show Attributes inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 23.	 Click the Background popup menu and choose a distinctive color

such as green or purple to make the label different from the button

on the other view controller.

	 24.	 Click the Center icon in the Alignment group to center text. The

Main.storyboard file should look similar to Figure 9-19.

Chapter 9 Using 3D Touch

271

	 25.	 Click the View Controller Scene in the Document Outline that

represents this second view controller.

	 26.	 Choose View ➤ Inspectors ➤ Show Identity inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 27.	 Click in the Storyboard ID text field and type PeekVC, then press

Enter as shown in Figure 9-20.

Figure 9-19.  The second view of the 3DPeekPopApp project

Chapter 9 Using 3D Touch

272

	 28.	 Choose File ➤ New ➤ File. A template dialog appears.

	 29.	 Click Cocoa Touch Class under the iOS category and click the Next

button. Another window appears.

	 30.	 Click in the Class text field and type PeekViewController.

	 31.	 Make sure the Subclass of popup menu displays UIViewController

and then click the Next button and then click the Create button.

Xcode displays a PeekViewController.swift file in the Navigator

pane.

	 32.	 Click the Main.storyboard file and click View Controller Scene in

the Document Outline that represents the second view controller

that contains the large label.

	 33.	 Choose View ➤ Inspectors ➤ Show Identity inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 34.	 Click in the Class popup menu and choose PeekViewController.

This connects the PeekViewController.swift file with the second

view controller on the storyboard.

Figure 9-20.  Identifying the second view controller with a Storyboard ID of PeekVC

Chapter 9 Using 3D Touch

273

	 35.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 36.	 Click the PeekViewController.swift file in the Navigator pane.

	 37.	 Add the following to the PeekViewController.swift file:

override var previewActionItems : [UIPreviewActionItem] {

 �let defaultAction = UIPreviewAction(title: "Default style",

style: .default) { (action, viewController) -> Void in

 print("Default")

 }

 �let selectAction = UIPreviewAction(title: "Selected style",

style: .selected) { (action, viewController) -> Void in

 print("Selected")

 }

 �let destructiveAction = UIPreviewAction(title: "Destructive

style", style: .destructive) { (action, viewController) ->

Void in

 print("Destructive")

 }

 return [defaultAction, selectAction, destructiveAction]

}

The entire PeekViewController.swift file should look like this:

import UIKit

class PeekViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

Chapter 9 Using 3D Touch

274

 override var previewActionItems : [UIPreviewActionItem] {

 �let defaultAction = UIPreviewAction(title: "Default style",

style: .default) { (action, viewController) -> Void in

 print("Default")

 }

 �let selectAction = UIPreviewAction(title: "Selected style",

style: .selected) { (action, viewController) -> Void in

 print("Selected")

 }

 �let destructiveAction = UIPreviewAction(title:

"Destructive style", style: .destructive) { (action,

viewController) -> Void in

 print("Destructive")

 }

 return [defaultAction, selectAction, destructiveAction]

 }

}

Note  To test 3D Touch in the Simulator, your Macintosh needs a Magic Trackpad.

	 38.	 Click the Scheme button in the upper left corner of the Xcode

window and choose iPhone 8 (or any iPhone model that supports

3D Touch).

	 39.	 Click the Run button, or choose Product ➤ Run. The Simulator

screen appears, displaying your first Touch Me to Peek button.

	 40.	 Move the mouse pointer over this Touch Me to Peek button and

press one finger down on the Magic Trackpad. The second view

controller displaying the large label appears.

Chapter 9 Using 3D Touch

275

	 41.	 Swipe up. The Touch Me to Peek label slides up and displays a

menu underneath displaying different styles (Default, Selected,

and Destructive) as shown in Figure 9-21.

	 42.	 Click any of the menu options such as Default style or Destructive

style. The initial view controller appears again displaying the

Touch Me to Peek button.

	 43.	 Choose Simulator ➤ Quit Simulator to return to Xcode.

Figure 9-21.  Displaying three different types of preview menu items

Chapter 9 Using 3D Touch

276

�Summary
3D Touch provides another way for users to interact with your app. Although 3D Touch

is currently only available on the iPhone (but not the iPad or certain iPhone models such

as the iPhone Xr), adding 3D Touch to your app can provide users with the latest features

they’ve come to expect from iPhone apps.

When testing 3D Touch, you need a Magic Trackpad to test in the Simulator, but it’s

more reliable to test on an actual iPhone connected to your Macintosh through a USB

cable. Just make sure that iPhone supports 3D Touch.

3D Touch isn’t crucial for any app, but it’s just an added feature that can make your

app feel modern and up to date with the latest version of iOS.

Chapter 9 Using 3D Touch

277
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_10

CHAPTER 10

Detecting Motion
and Orientation
Mobile computer devices like the iPhone and iPad essentially put a PC in your pocket,

letting you use a computer wherever you happen to be. However, unlike a desktop or even

a laptop PC, mobile computers can track movement and orientation. This can come in

handy for tracking the user’s arm movements in a game or helping you measure angles.

To track motion and orientation, every iOS device comes with a built-in

accelerometer that can detect movement. In addition to the accelerometer, the iOS

devices also include a gyroscope to detect positions of the iOS device. By adding motion

and orientation detection, you can create apps that respond to physical gestures as well

as touch gestures.

�Detecting Shake Gestures
The shake gesture is the easiest gesture to detect. Many apps use the shake gesture as a

shortcut to undo actions. If you type text in the Notes app on an iPhone or iPad, you can

shake your device to undo the last text you typed. Detecting a shake gesture involves

using the motionEnded function:

 �override func motionEnded(_ motion: UIEvent.EventSubtype, with event:

UIEvent?) {

 }

Inside this motionEnded function, you need to check if the motion that ended was

the .motionShake event (a shake gesture) like this:

if motion == .motionShake {

 }

278

Once you detect that the motion is a shake gesture, then your app can respond. To

see how to detect a shake gesture, follow these steps:

	 1.	 Create a new iOS Single View App project and name it ShakeApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 4.	 Move the mouse pointer over the middle of the view controller,

hold down the Control key, and Ctrl-drag under the class

ViewController line in the ViewController.swift file.

	 5.	 Release the Control key and the left mouse button. A popup

window appears.

	 6.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myView: UIView!

	 7.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 8.	 Click the ViewController.swift file in the Navigator pane.

	 9.	 Add the following underneath the viewDidLoad method:

�override func motionEnded(_ motion: UIEvent.EventSubtype, with

event: UIEvent?) {

 if motion == .motionShake {

 if myView.backgroundColor == UIColor.red {

 myView.backgroundColor = UIColor.green

 } else {

 myView.backgroundColor = UIColor.red

 }

 }

}

Chapter 10 Detecting Motion and Orientation

279

This code simply detects a shaking gesture and alternates between

changing the background color to red and green each time it

detects another shake gesture. The entire ViewController.swift file

should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myView: UIView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 �override func motionEnded(_ motion: UIEvent.EventSubtype, with

event: UIEvent?) {

 if motion == .motionShake {

 if myView.backgroundColor == UIColor.red {

 myView.backgroundColor = UIColor.green

 } else {

 myView.backgroundColor = UIColor.red

 }

 }

 }

}

	 10.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 11.	 Choose Hardware ➤ Shake Gesture as shown in Figure 10-1.

Notice that the Simulator screen turns red.

Chapter 10 Detecting Motion and Orientation

280

	 12.	 Choose Hardware ➤ Shake Gesture. Notice that this time the

Simulator screen turns green. If you keep choosing the Shake

Gesture command, the Simulator screen will alternate between

red and green.

	 13.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Figure 10-1.  Choosing the Shake Gesture in the Simulator

Chapter 10 Detecting Motion and Orientation

281

�Understanding Core Motion
To detect movement beyond simple shakes, Apple provides a software framework called

Core Motion. Core Motion lets an app access the following types of motion data:

•	 Acceleration in three dimensions

•	 Rotation around the x, y, and z axes

•	 Magnetometer data that measures the device’s orientation relative to

the Earth’s magnetic field

•	 Device motion data such as its orientation relative to gravity

Note T o test motion and orientation, you need a real iOS device connected
to your Macintosh through a USB cable. The Simulator can only detect shaking
motions but cannot detect changes in physical movements and different
orientations.

To use Core Motion in an app, you need to import the CoreMotion framework and

then create a CMMotionManager object like this:

import CoreMotion

let motionManager = CMMotionManager()

To detect motion, your app first needs to check if the iOS device contains the

necessary equipment such as an accelerator or a gyroscope. This can be done by

checking to make sure one of the following is true:

•	 .isAccelerometerAvailable

•	 .isGyroAvailable

•	 .isMagnetometerAvailable

•	 .isDeviceMotionAvailable

Next, we need to determine a time interval to detect data such as

•	 accelerometerUpdateInterval

•	 gyroUpdateInterval

Chapter 10 Detecting Motion and Orientation

282

•	 magnetometerUpdateInterval

•	 deviceMotionUpdateInterval

Finally, you need to check for data updates on a special queue called

OperationQueue. Without this OperationQueue, motion-detecting data could arrive

faster than the app could process it, making the app feel frozen or unresponsive.

�Detecting Acceleration
The accelerometer can measure both acceleration and gravity in three dimensions. The

accelerometer can determine not only how an iOS device is being held, but also whether

it’s lying face down or face up on a flat surface such as a table. Accelerometers measure

g-forces (g for gravity), so a value of 1.0 returned by the accelerometer means that 1 g is

sensed in a particular direction, as in these examples:

•	 If the device is being held perfectly upright, in portrait orientation, it

will detect and report about 1 g of force exerted on its y axis.

•	 If the device is being held at an angle, that 1 g of force will be

distributed along different axes depending on how it is being held.

When held at a 45-degree angle, the 1 g of force will be split roughly

equally between two of the axes.

Sudden movement can be detected by looking for accelerometer values considerably

larger than 1 g. In normal usage, the accelerometer does not detect significantly more

than 1 g on any axis. If you shake, drop, or throw your device, the accelerometer will

detect a greater amount of force on one or more axes as shown in Figure 10-2.

Chapter 10 Detecting Motion and Orientation

283

To see how to use the accelerometer, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

AccelerateApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a label onto the view.

Expand the width and height of the label.

	 4.	 Choose View ➤ Inspectors ➤ Show Attributes inspector, or click the

Attributes Inspector in the upper right corner of the Xcode window.

	 5.	 Click in the Lines text field and change it to 0. A 0 value means that

the label can hold an unlimited number of lines of text.

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the label.

	 7.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 8.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

Figure 10-2.  The iPhone accelerometer’s axes in three dimensions. The front view of
an iPhone on the left shows the x and y axes. The side view on the right shows the z axis.

Chapter 10 Detecting Motion and Orientation

284

	 9.	 Release the Control key and the left mouse button. A popup

window appears.

	 10.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myLabel: UILabel!

	 11.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 12.	 Click the ViewController.swift file in the Navigator pane.

	 13.	 Add the following underneath the IBOutlet to access the Core

Motion manager:

let motionManager = CMMotionManager()

	 14.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 if motionManager.isAccelerometerAvailable {

 motionManager.accelerometerUpdateInterval = 2.5

 �motionManager.startAccelerometerUpdates(to:

OperationQueue.main) { (motion, error) -> Void in

 if let trackMotion = motion {

 let userAcceleration = trackMotion.acceleration

 �let displayText = "x: \(userAcceleration.x) \ny: \

(userAcceleration.y) \nz: \(userAcceleration.z)"

 DispatchQueue.main.async {

 self.myLabel.text = displayText

 }

 }

 }

 }

}

Chapter 10 Detecting Motion and Orientation

285

Once we know that the accelerometer is available, we can assign

an arbitrary update interval as 2.5 seconds. This will update the

values slowly so we can see the different values as we move the

iOS device. Finally, we track the acceleration of the iOS device

and store this data in a string (displayText), which uses the \n

character to define a new line. Finally, we display this string in the

label. Notice that updating this label occurs on the main thread

because the label is part of the user interface and updating the

user interface always needs to occur on the main thread.

	 15.	 Connect an iOS device to your Macintosh through a USB cable.

	 16.	 Click the Run button or choose Product ➤ Run.

	 17.	 Lay the iOS device on a flat surface such as a table. The z value

should appear close to –1.0.

	 18.	 Hold the iOS device in portrait orientation so it’s vertical. The y

value should appear close to –1.0.

	 19.	 Lay the iOS device on its side. The x value should appear

close to –1.0.

	 20.	 Click the Stop button in Xcode.

�Detecting Rotation with the Gyroscope
A gyroscope measures orientation and rotation around the x, y, and z axes. Rotation

around the x axis occurs when the iOS device tumbles backward or forward around

its horizontal center. Rotation around the y axis occurs when the iOS device twists

around its vertical center. Rotation around the z axis occurs when the iOS device rotates

clockwise or counterclockwise as if pierced by a line through its front and back as shown

in Figure 10-3.

Chapter 10 Detecting Motion and Orientation

286

To see how to use the gyroscope to detect and measure rotation, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

RotationApp.

	 2.	 Create the user interface exactly as you created the AccelerateApp

in the previous example with an enlarged label connected to the

IBOutlet in the ViewController.swift file.

	 3.	 Click the RotationApp project name at the top of the Navigator

pane.

	 4.	 Click General and clear the Landscape Left and Landscape Right

check boxes so only the Portrait check box remains selected

as shown in Figure 10-4. This will keep the user interface from

changing when you rotate the iOS device around.

Figure 10-3.  Rotation around the x, y, and z axes

Chapter 10 Detecting Motion and Orientation

287

	 5.	 Click the ViewController.swift file in the Navigator pane.

	 6.	 Edit the ViewController.swift file so the entire file looks like the

following:

import UIKit

import CoreMotion

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 let motionManager = CMMotionManager()

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 if motionManager.isGyroAvailable {

Figure 10-4.  Defining Portrait orientation only

Chapter 10 Detecting Motion and Orientation

288

 motionManager.gyroUpdateInterval = 2.5

 �motionManager.startGyroUpdates(to: OperationQueue.

main) { (motion, error) -> Void in

 if let trackMotion = motion {

 let userRotation = trackMotion.rotationRate

 �let displayText = "x: \(userRotation.x) \ny: \

(userRotation.y) \nz: \(userRotation.z)"

 DispatchQueue.main.async {

 self.myLabel.text = displayText

 }

 }

 }

 }

 }

}

	 7.	 Connect an iOS device to your Macintosh through a USB cable.

	 8.	 Click the Run button or choose Product ➤ Run.

	 9.	 Rapidly dip your iOS device forward and backward across its

horizontal center (x axis). Notice that the x value displayed on the

screen changes drastically away from 0 such as reaching a value of

–8 or 10.

	 10.	 Twist your iOS device around its vertical center (y axis). Notice

that the y value displayed on the screen changes drastically away

from 0 such as reaching a value of 7 or –6.

	 11.	 Rotate your iOS device clockwise and counterclockwise around its

z axis that pierces the front and back of the device. Notice that the

z value displayed on the screen changes drastically away from 0

such as reaching a value of –6 or 5.

	 12.	 Click the Stop button in Xcode to stop running the app.

Chapter 10 Detecting Motion and Orientation

289

�Detecting Magnetic Fields
A magnetometer measures the Earth’s magnetic field relative to the iOS device that

contains the magnetometer. The values returned measure the Earth’s magnetic field in

microteslas where the x value measures horizontal displacement to the nearest magnetic

field, the y value measures the vertical displacement, and the z value measures the

altitude above/below the Earth’s magnetic field.

To see how to get data from the magnetometer, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

MagnetApp.

	 2.	 Create the user interface exactly as you created the AccelerateApp

in the previous example with an enlarged label connected to the

IBOutlet in the ViewController.swift file.

	 3.	 Click the ViewController.swift file in the Navigator pane.

	 4.	 Edit the ViewController.swift file so the entire file looks like the

following:

import UIKit

import CoreMotion

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 let motionManager = CMMotionManager()

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 if motionManager.isMagnetometerAvailable {

 motionManager.magnetometerUpdateInterval = 0.5

 �motionManager.startMagnetometerUpdates(to:

OperationQueue.main) { (motion, error) -> Void in

 if let trackMotion = motion {

 let userField = trackMotion.magneticField

 �let displayText = "x: \(userField.x) \ny: \

(userField.y) \nz: \(userField.z)"

Chapter 10 Detecting Motion and Orientation

290

 DispatchQueue.main.async {

 self.myLabel.text = displayText

 }

 }

 }

 }

 }

}

	 5.	 Connect an iOS device to your Macintosh through a USB cable.

	 6.	 Click the Run button or choose Product ➤ Run.

	 7.	 Move your iOS device around to see the x, y, and z values change.

	 8.	 Click the Stop button in Xcode to stop running the app.

�Detecting Device Motion Data
Detecting device motion data lets you retrieve roll, pitch, and yaw data. Roll measures

the rotation around the vertical axis, pitch measures the rotation around the horizontal

axis, and yaw measures the rotation around an axis that pierces through the front and

back of an iOS device as shown in Figure 10-5.

Figure 10-5.  Identifying roll, pitch, and yaw on an iOS device

Chapter 10 Detecting Motion and Orientation

291

To see how to detect roll, pitch, and yaw, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

DeviceMotionApp.

	 2.	 Create the user interface exactly as you created the AccelerateApp

in the previous example with an enlarged label connected to the

IBOutlet in the ViewController.swift file.

	 3.	 Click the ViewController.swift file in the Navigator pane.

	 4.	 Edit the ViewController.swift file so the entire file looks like the following:

import UIKit

import CoreMotion

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 let motionManager = CMMotionManager()

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 if motionManager.isDeviceMotionAvailable {

 motionManager.deviceMotionUpdateInterval = 2.5

 �motionManager.startDeviceMotionUpdates(to:

OperationQueue.main) { (motion, error) -> Void in

 if let trackMotion = motion {

 let userField = trackMotion.attitude

 �let displayText = "Roll: \(userField.roll) \nPitch:

\(userField.pitch) \nYaw: \(userField.yaw)"

 DispatchQueue.main.async {

 self.myLabel.text = displayText

 }

 }

 }

 }

 }

}

Chapter 10 Detecting Motion and Orientation

292

	 5.	 Connect an iOS device to your Macintosh through a USB cable.

	 6.	 Click the Run button or choose Product ➤ Run.

	 7.	 Lay your iOS device flat on a table. The x, y, and z values should be

near 0.

	 8.	 Twist your iOS device around its vertical axis. The Roll value

should deviate from 0 such as –2 or 3.

	 9.	 Flip the front of your iOS device backward and forward. The Pitch

value should deviate from 0 such as 1 or –2.

	 10.	 Rotate your iOS device on the flat surface clockwise and

counterclockwise. The Yaw value should deviate from 0

such as –2 to 1.

	 11.	 Click the Stop button in Xcode to stop running the app.

�Summary
Every iOS device comes with built-in sensors to measure movement. Shake gestures are

the easiest to detect, which an app can use to represent the Undo command for reversing

the last action a user took. To detect other types of movements of an iOS device, you

need to use the CoreMotion framework.

Some of the different types of motion data an app can detect includes acceleration,

rotation, and even nearby magnetic fields. Detecting the movement of an iOS device lets

an app respond appropriately, giving movement another way to control an app.

Chapter 10 Detecting Motion and Orientation

293
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_11

CHAPTER 11

Using Location and Maps
One of the most useful features of mobile computers like smartphones and tablets is

the ability to identify their location in the real world. Just this feature alone has made

possible ride-sharing services that allow devices to track the position of both cars and

waiting passengers in real time.

Tracking the location of an iOS device involves Global Positioning System (GPS),

cell ID location, and WiFi positioning service (WPS). By using three different services,

Apple’s Core Location framework can pinpoint the location of an iOS device with varying

degrees of accuracy.

Fortunately, Core Location hides the details of using these various technologies.

Instead, Core Location lets you simply specify the degree of accuracy you wish, such as

finding the location of an iOS device within 10 or 200 meters while also detecting any

changes in the location of an iOS device. By tracking locations within a specified degree

of accuracy and the distance an iOS device must travel before detecting movement, Core

Location makes it easy for any app to identify the location of any iOS device.

Note  The more accurate and more often you need to track the movement of an
iOS device’s location, the more battery power the app will require, so you need to
trade off between greater accuracy and constant updates against longer battery life.

�Using Core Location
The first step to using Core Location is to import the Core Location framework into an

app like this:

import CoreLocation

294

After importing the Core Location framework, the next step is to access the location

manager with any arbitrary name such as locationManager like this:

let locationManager = CLLocationManager()

A class needs to conform to the CLLocationManagerDelegate protocol, which you

can do in one of two ways. First, you can simply add this to the class line like this:

class ViewController: UIViewController, CLLocationManagerDelegate {

Then you can declare that this class is the CLLocationManagerDelegate inside the

viewDidLoad method:

 override func viewDidLoad() {

 super.viewDidLoad()

 locationManager.delegate = self

 }

The other way to conform to the CLLocationManagerDelegate protocol is to use an

extension at the end of the class ViewController file like this:

extension CLLocationManagerDelegate {

}

Then you can declare that this class is the CLLocationManagerDelegate inside the

viewDidLoad method:

 override func viewDidLoad() {

 super.viewDidLoad()

 locationManager.delegate = self as? CLLocationManagerDelegate

 }

�Defining Accuracy
When using Core Location, you need to define the amount of accuracy you want.

Remember, the greater the accuracy, the more power the iOS device will require so

it’s best to choose the level of accuracy your app absolutely needs. If you just need to

identify the user’s geographical location such as a city, then you don’t need specific

accuracy. However, if your app needs to know the iOS device’s precise location to

Chapter 11 Using Location and Maps

295

locate the user such as for a ride-sharing service that needs to know where to pick up a

passenger, then you’ll need greater precision.

You can define a specific level of accuracy in meters such as 150 meters. However,

Core Location provides several constants you can use that define varying degrees of

accuracy:

•	 kCLLocationAccuracyBestForNavigation – The highest possible

accuracy used for navigation apps

•	 kCLLocationAccuracyNearestTenMeters – Accurate to within 10

meters

•	 kCLLocationAccuracyHundredMeters – Accurate to within 100 meters

•	 kCLLocationAccuracyKilometer – Accurate to the nearest kilometer

•	 kCLLocationAccuracyThreeKilometers – Accurate to the nearest 3

kilometers

To define accuracy, you need to set the desiredAccuracy property to a value or to one

of the preceding constants like this:

locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters.

�Defining a Distance Filter
In addition to defining the accuracy you want, you can also define a distance filter that

specifies how far the iOS device needs to move to detect movement. The default value is

stored in a constant called kCLDistanceFilterNone, which tells an app to be notified of all

movement.

However, if you define a specific value in meters, you can modify this distance filter

such as only detecting movement when an iOS device travels 100 meters such as

locationManager.distanceFilter = 100

Chapter 11 Using Location and Maps

296

�Requesting a Location
Core Location gives you two ways to request the location of an iOS device. The first

method requests the location once. This can be useful for apps that don’t need constant

updating to track movement. To request location once, use the requestLocation method

like this:

locationManager.requestLocation()

Because the requestLocation method only checks for a location once, it requires

far less power than the second method, which requests locations continuously.

To track locations continuously, you need to use the startUpdatingLocation and

stopUpdatingLocation methods like this:

locationManager.startUpdatingLocation()

locationManager.stopUpdatingLocation()

Core Location also offers two Boolean values you can modify as follows:

•	 pausesLocationUpdatesAutomatically – Allows an app to temporarily

pause updating a location

•	 allowsBackgroundLocationUpdates – Defines whether an app can

continue receiving location updates even when the app is suspended

�Retrieving Location Data
When Core Location retrieves the location of an iOS device, it provides several different

types of values:

•	 coordinate.latitude and coordinate.longitude – Returns the latitude

and longitude of a location

•	 horizontalAccuracy – Returns a distance of how accurate Core

Location believes the defined location might be, measured in meters

•	 altitude – Returns the distance above or below sea level, measured in

meters

•	 verticalAccuracy – Returns a distance of how accurate Core Location

believes the altitude might be, measured in meters

Chapter 11 Using Location and Maps

297

•	 floor – Returns the floor of a building where the iOS device is located

•	 timestamp – Returns the time the location was retrieved

�Requesting Authorization
Apps often need to request permission to access many hardware features of an iOS

device. By forcing an app to request permission, Apple wants to make sure users

authorize an app’s access to features such as the camera, the microphone, and the

device’s location. Requesting authorization provides privacy for users and allows them

to know exactly when an app might need to request access to specific hardware features.

Any app that uses Core Location must request authorization to track an iOS device’s

location. Core Location provides two ways to request authorization:

•	 requestWhenInUseAuthorization() – Uses location services only

when your app is running

•	 requestAlwaysAuthorization() – Uses location services all the time

In most cases, you’ll only want to use location services while your app is running.

Besides using one of the preceding methods, an app also needs to modify its Info.plist

file and add the Privacy – Location When In Use Usage Description key as shown in

Figure 11-1. In addition, you’ll need to add descriptive text explaining why your app

needs to access location services.

Figure 11-1.  Requesting to use location services in the Info.plist file

Chapter 11 Using Location and Maps

298

�Adding a Map
While you could display location data as text, you’ll more likely want to display a location

visually on a map. To do this, you need to use a Map Kit View, which displays a map on

the screen. Then you’ll need to import the MapKit framework such as

import MapKit

Finally, you’ll need to make the Map Kit View display the current location. To do this,

you just need to set the showsUserLocation property to true such as

 @IBOutlet var mapView: MKMapView!

 mapView.showsUserLocation = true

To see how to identify the location of an iOS device and display it on a map, follow

these steps:

	 1.	 Create a new iOS Single View App project and name it

LocationApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a Map Kit View at the top

and a text view at the bottom of the view controller as shown in

Figure 11-2.

Chapter 11 Using Location and Maps

299

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the bottom half of the submenu. Xcode adds

constraints to the Map Kit View and the text view.

	 5.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 6.	 Move the mouse pointer over the Map Kit View, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

Figure 11-2.  Placing a Map Kit View and a text view on the user interface

Chapter 11 Using Location and Maps

300

	 7.	 Release the Control key and the left mouse button. A popup

window appears.

	 8.	 Click in the Name text field, type mapView, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var mapView: MKMapView!

	 9.	 Move the mouse pointer over the text view, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 10.	 Release the Control key and the left mouse button. A popup

window appears.

	 11.	 Click in the Name text field, type myTextView, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextView: UITextView!

	 12.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 13.	 Click the ViewController.swift file in the Navigator pane.

	 14.	 Add the following underneath the import UIKit line:

import CoreLocation

import MapKit

This code imports the Core Location framework to retrieve

location data and imports the MapKit framework to allow the Map

Kit View to display a scrollable map.

	 15.	 Add the following under the IBOutlets:

let locationManager = CLLocationManager()

	 16.	 Edit the class ViewController line as follows:

class ViewController: UIViewController, CLLocationManagerDelegate {

Chapter 11 Using Location and Maps

301

This makes the ViewController.swift file the

CLLocationManagerDelegate. That means we need to define the

ViewController.swift file as the delegate later.

	 17.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 locationManager.delegate = self

 locationManager.desiredAccuracy = kCLLocationAccuracyNearestTenMeters

 locationManager.requestWhenInUseAuthorization()

 locationManager.startUpdatingLocation()

 mapView.showsUserLocation = true

}

This code makes the ViewController.swift file the

CLLocationManager delegate. Then it defines the accuracy to

10 meters. The next line requests authorization to use location

services, which means we’ll need to edit the Info.plist file later.

The startUpdatingLocation() method retrieves location data,

while the showsUserLocation property is set to true to allow the

Map Kit View to display the location. The entire ViewController.

swift file should look like this:

import UIKit

import CoreLocation

import MapKit

class ViewController: UIViewController, CLLocationManagerDelegate {

 @IBOutlet var myTextView: UITextView!

 @IBOutlet var mapView: MKMapView!

 let locationManager = CLLocationManager()

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

Chapter 11 Using Location and Maps

302

 locationManager.delegate = self

 �locationManager.desiredAccuracy = kCLLocationAccuracy

NearestTenMeters

 locationManager.requestWhenInUseAuthorization()

 locationManager.startUpdatingLocation()

 mapView.showsUserLocation = true

 }

 �func locationManager(_ manager: CLLocationManager,

didUpdateLocations locations: [CLLocation]) {

 if let newLocation = locations.last {

 let latitudeString = "\(newLocation.coordinate.latitude)"

 let longitudeString = "\(newLocation.coordinate.longitude)"

 �myTextView.text = "Latitude: " + latitudeString + "\

nLongitude: " + longitudeString

 }

 }

}

	 18.	 Click the Info.plist file in the Navigator pane.

	 19.	 Move the mouse pointer over the bottom row until a + and – icon

appears. Click the + icon to add another row.

	 20.	 Click in the newly added row, and when a popup menu appears,

choose Privacy – Location When In Use Usage Description (see

Figure 11-1).

	 21.	 Click in the Value column of this row and type a message such as

“Need to access location services”.

	 22.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 23.	 Choose Debug ➤ Location ➤ Apple to mimic the location of Apple’s

headquarters as shown in Figure 11-3. You can mimic a two-finger

pinch gesture by holding down the Option key and dragging the

mouse so you can zoom in and out of the displayed map.

Chapter 11 Using Location and Maps

303

	 24.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Note I f you run this app on a real iOS device, you can see your actual location in
the world.

�Zooming in a Location
Although Core Location can find coordinates to our current location (or a simulated

location such as Apple’s headquarters), the app currently displays the location on a large

map. While the user could pinch to zoom in, ideally the app should display a closer view

of our location automatically.

Figure 11-3.  Displaying the location of Apple’s headquarters on a map

Chapter 11 Using Location and Maps

304

To do this, not only do we need to know a location, but we also need to define a

region to show around that location. Defining a region around a location involves

defining the following:

•	 latitudeDelta – Measures north-to-south distance (measured in

degrees) to display

•	 longitudeDelta – Measures east-to-west distance (measured in

degrees) to display

To see how to zoom in on a location, follow these steps:

	 1.	 Make sure the LocationApp project is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Edit the class ViewController line as follows:

class ViewController: UIViewController, CLLocationManagerDelegate,

MKMapViewDelegate {

The MKMapViewDelegate gives us access to a mapView function

that will let us zoom in to the defined location. After defining

a MKMapViewDelegate, the next step is to make sure the map

knows that the ViewController.swift file is the delegate.

	 4.	 Edit the viewDidLoad method by adding the mapView.delegate =

self line at the end as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 locationManager.delegate = self

 �locationManager.desiredAccuracy = kCLLocationAccuracy

NearestTenMeters

 locationManager.requestWhenInUseAuthorization()

 locationManager.startUpdatingLocation()

 mapView.showsUserLocation = true

 mapView.delegate = self

}

Chapter 11 Using Location and Maps

305

	 5.	 Add the following mapView function:

�func mapView(_ mapView: MKMapView, didUpdate userLocation:

MKUserLocation) {

 �let zoomArea = MKCoordinateRegion(center: self.mapView.

userLocation.coordinate, span: MKCoordinateSpan

(latitudeDelta: 0.05, longitudeDelta: 0.05))

 self.mapView.setRegion(zoomArea, animated: true)

}

The latitudeDelta and longitudeDelta values are 0.05, but

you can experiment with larger or smaller values. The entire

ViewController.swift file should look like this:

import UIKit

import CoreLocation

import MapKit

class ViewController: UIViewController, CLLocationManagerDelegate,

MKMapViewDelegate {

 @IBOutlet var myTextView: UITextView!

 @IBOutlet var mapView: MKMapView!

 let locationManager = CLLocationManager()

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 locationManager.delegate = self

 �locationManager.desiredAccuracy = kCLLocationAccuracy

NearestTenMeters

 locationManager.requestWhenInUseAuthorization()

 locationManager.startUpdatingLocation()

 mapView.showsUserLocation = true

 mapView.delegate = self

 }

 �func locationManager(_ manager: CLLocationManager,

didUpdateLocations locations: [CLLocation]) {

Chapter 11 Using Location and Maps

306

 if let newLocation = locations.last {

 let latitudeString = "\(newLocation.coordinate.latitude)"

 let longitudeString = "\(newLocation.coordinate.longitude)"

 �myTextView.text = "Latitude: " + latitudeString + "\

nLongitude: " + longitudeString

 }

 }

 �func mapView(_ mapView: MKMapView, didUpdate userLocation:

MKUserLocation) {

 �let zoomArea = MKCoordinateRegion(center:

self.mapView.userLocation.coordinate, span:

MKCoordinateSpan(latitudeDelta: 0.05, longitudeDelta:

0.05))

 self.mapView.setRegion(zoomArea, animated: true)

 }

}

	 6.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears and zooms in on the location of Apple’s

headquarters as shown in Figure 11-4.

Chapter 11 Using Location and Maps

307

	 7.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Adding Annotations
An annotation allows the user to identify a location and place a cartoon pin on a map

along with descriptive text. An annotation needs a location, which we can define by

wherever the user presses on the map for an extended period of time, known as a long

press.

Once we know where the user pressed on the map, we can display the annotation

by adding it to the map along with any additional text. In addition, we’ll store the

annotations in an array and include a button to clear the annotations from the map.

Figure 11-4.  Zooming in on a location on a map

Chapter 11 Using Location and Maps

308

To see how to add annotations, follow these steps:

	 1.	 Make sure the LocationApp project is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Add the following under the IBOutlets to define an array to hold

all annotations added to the map:

var myAnnotations = [CLLocation]()

	 4.	 Edit the viewDidLoad method to recognize a long press gesture

and add it to the map view as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 locationManager.delegate = self

 �locationManager.desiredAccuracy = kCLLocationAccuracy

NearestTenMeters

 locationManager.requestWhenInUseAuthorization()

 locationManager.startUpdatingLocation()

 mapView.showsUserLocation = true

 mapView.delegate = self

 �let longGesture = UILongPressGestureRecognizer(target: self,

action: #selector(addPin(longGesture:)))

 mapView.addGestureRecognizer(longGesture)

}

This long press gesture defines a function called addPin to

respond to a long press, which means we now need to create that

addPin function.

	 5.	 Add the following function under the viewDidLoad method:

@objc func addPin(longGesture: UIGestureRecognizer) {

 let touchPoint = longGesture.location(in: mapView)

 �let touchLocation = mapView.convert(touchPoint,

toCoordinateFrom: mapView)

Chapter 11 Using Location and Maps

309

 �let location = CLLocation(latitude: touchLocation.latitude,

longitude: touchLocation.longitude)

 let myAnnotation = MKPointAnnotation()

 myAnnotation.coordinate = touchLocation

 �myAnnotation.title = "\(touchLocation.latitude) \

(touchLocation.longitude)"

 myAnnotations.append(location)

 self.mapView.addAnnotation(myAnnotation)

}

	 6.	 Click the Main.storyboard file in the Navigator pane.

	 7.	 Click the Library icon and drag and drop a button on the user

interface such as between the map view and the text view.

	 8.	 Double-click the button, type Clear Pins, and press Enter.

	 9.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 10.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 11.	 Release the Control key and the left mouse button. A popup

window appears.

	 12.	 Click in the Name text field, type clearPins, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a clearPins IBAction method.

	 13.	 Edit this clearPins IBAction method as follows:

@IBAction func clearPins(_ sender: UIButton) {

 mapView.removeAnnotations(mapView.annotations)

 myAnnotations.removeAll()

}

Chapter 11 Using Location and Maps

310

	 14.	 Click the Run button or choose Product ➤ Run. The LocationApp

appears on your iPhone.

	 15.	 Move the mouse pointer to different parts of the map and hold

down the left mouse button until a pin appears. Repeat as often as

you like to see multiple pins placed wherever you hold down the

left mouse button as shown in Figure 11-5.

	 16.	 Click the Clear Pins button. Notice that all the annotations

disappear off the map.

	 17.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Figure 11-5.  Placing multiple annotations on a map

Chapter 11 Using Location and Maps

311

�Summary
Mobile devices such as the iPhone and iPad can be especially useful when tracking

the user’s current location. When combined with a map display, an app can show the

location of the user and the locations of other places or people as well.

When identifying a user’s location, you can define the accuracy you want and the

magnification of the map. To add annotations, you can detect a long press gesture and

place a cartoon pin wherever the user presses on the map.

Remember that the greater the accuracy you need, the more power the app will

require, which can drain the iOS device’s battery, so only use greater accuracy when

you need it. Also make sure that any app that uses location services requests permission

to do so. An app won’t be able to use location services until the user gives permission to

do so.

Chapter 11 Using Location and Maps

313
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_12

CHAPTER 12

Playing Audio and Video
Not every app needs audio and video, but playing audio and video within an app can

create an interesting way to deliver information to the user. For example, an app might

want to play music or different sounds to alert the user or play a video to demonstrate

steps for the user to follow. With both audio and video, an app can provide a more

dynamic user experience.

When working with audio and video files, it’s important to identify the file format.

Some popular audio formats supported by iOS include

•	 .mp3 – Popular format that compresses audio files

•	 .aac – Advanced Audio Coding format that improves upon

the mp3 format

•	 .aif – Audio Interchange File Format

•	 .wav – Waveform Audio file mostly found on Windows PCs

•	 .mp4 – MPEG-4 audio file

Some popular video formats supported by iOS include

•	 .mov – QuickTime media format

•	 .mp4 – MPEG-4 video file

•	 .m4v – An MPEG-4 video file, often called an iTunes video file

because this is the format of videos downloaded from the iTunes

Store

Note  If you have an audio or video file stored in a different format, you’ll need to
convert it to a format that iOS can recognize.

314

�Playing an Audio File
To play audio, you need to import AVFoundation into your project like this:

import AVFoundation

After you’ve imported AVFoundation into your project, you can create a variable to

represent the AVAudioPlayer such as

var audioPlayer: AVAudioPlayer!

To play an audio file, you need to drag and drop an audio file into the Navigator pane.

Then you need to write code that loads the audio file into the AVAudioPlayer variable.

Finally, you can use the play(), pause(), and stop() methods to control the playing of the

audio file.

To complete this example, you’ll need an audio file stored in a supported file format

such as .mp3 or .mov. If you don’t have any audio files stored on your Macintosh, you

can download free audio files from the following sites:

•	 soundbible.com

•	 archive.org

•	 pond5.com

•	 gamesounds.xyz

You can also record audio files on a Macintosh by loading the QuickTime Player

program and choosing File ➤ New Audio Recording. Once you have an audio file, either

one you downloaded or created through QuickTime Player program, you can test how to

play an audio file in an iOS app.

When working with files of any type, you need to specify the file name and the

file path. The file name is the complete name of the file and its file extension such as

HappyBirthday.mp3 or JingleBells.mov. The file path defines the location of the file

within your app.

To retrieve the file path, you need to identify the file name and type you want to find

such as

let audioFilePath = Bundle.main.path(forResource: "Streetlife", ofType: "mp3")

Once you know the path of the file you want to play, then you can load that file and

path into the AVAudioPlayer to play it.

Chapter 12 Playing Audio and Video

http://soundbible.com
http://archive.org
http://pond5.com

315

To see how to play an audio file, follow these steps:

	 1.	 Create a new iOS project using the Single View App template and

name this new project PlayAudioApp. This creates a single view

for the user interface.

	 2.	 Click the Main.storyboard file in the Navigator pane. Xcode

displays the single view.

	 3.	 Click the Library icon to open the Object Library window.

	 4.	 Drag and drop a Toolbar onto the view as shown in Figure 12-1.

	 5.	 Click the Library icon to open the Object Library window. Then

drag and drop three Bar Button Items on the Toolbar as shown in

Figure 12-2.

	 6.	 Click the Library icon to open the Object Library window. Then

drag and drop two Flexible Space Bar Button Items on the Toolbar

as shown in Figure 12-3. One Bar Button Item should appear on

the left followed by a Flexible Space Bar Button. Then the second

Bar Button Item appears in the middle followed by the second

Flexible Space Bar Button. Finally, the last Bar Button Item

appears on the far right.

Figure 12-1.  The Toolbar in the Object Library window

Figure 12-2.  The Bar Button Item in the Object Library window

Chapter 12 Playing Audio and Video

316

	 7.	 Click the Bar Button Item on the far left of the Toolbar to select it.

	 8.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 9.	 Click the System Item popup menu. A popup menu appears as

shown in Figure 12-4.

Figure 12-3.  The Flexible Space Bar Button Item in the Object Library window

Figure 12-4.  Defining a Bar Button Item’s System Item property

Chapter 12 Playing Audio and Video

317

	 10.	 Choose Pause.

	 11.	 Click the middle Bar Button Item.

	 12.	 Click the System Item popup menu in the Attributes Inspector

pane and choose Play.

	 13.	 Click the far right Bar Button Item.

	 14.	 Click the System Item popup menu in the Attributes Inspector

pane and choose Stop. Your Toolbar should display three Bar

Button Items with icons as shown in Figure 12-5.

Figure 12-5.  The completed Toolbar with three Bar Button Items separated by two
Flexible Space Bar Button Items

The Toolbar with three Bar Button Items (separated by two Flexible Space Bar Button

Items) represents the entire user interface. The next steps involve connecting the three

Bar Button Items to IBAction methods to load, play, pause, and stop the audio file.

To write Swift code to play an audio file, follow these steps:

	 1.	 Make sure the PlayAudioApp project is loaded into Xcode.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the ViewController.swift file.

	 4.	 Move the mouse pointer over the Pause button (the button

on the far left) in the Toolbar, hold down the Control key, and

Ctrl-drag just above the last curly bracket at the bottom of the

ViewController.swift file.

Chapter 12 Playing Audio and Video

318

	 5.	 Release the Control key and the left mouse button. A popup

window appears. Make sure the Connection popup menu displays

Action.

	 6.	 Click in the Name text field, type pauseAudio, and press Enter.

	 7.	 Click in the Type popup menu and choose UIBarButtonItem.

Then click the Connect button. Xcode creates an empty IBAction

method as follows:

@IBAction func pauseAudio(_ sender: UIBarButtonItem) {

}

	 8.	 Move the mouse pointer over the Play button (the button in

the middle) in the Toolbar, hold down the Control key, and

Ctrl-drag just above the last curly bracket at the bottom of the

ViewController.swift file.

	 9.	 Release the Control key and the left mouse button. A popup

window appears. Make sure the Connection popup menu displays

Action.

	 10.	 Click in the Name text field, type playAudio, and press Enter.

	 11.	 Click in the Type popup menu and choose UIBarButtonItem.

Then click the Connect button. Xcode creates an empty IBAction

method.

	 12.	 Move the mouse pointer over the Stop button (the button on

the far right) in the Toolbar, hold down the Control key, and

Ctrl-drag just above the last curly bracket at the bottom of the

ViewController.swift file.

	 13.	 Release the Control key and the left mouse button. A popup

window appears. Make sure the Connection popup menu displays

Action.

	 14.	 Click in the Name text field, type stopAudio, and press Enter.

	 15.	 Click in the Type popup menu and choose UIBarButtonItem.

Then click the Connect button. Xcode creates an empty IBAction

method.

Chapter 12 Playing Audio and Video

319

	 16.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon on the upper right corner of the Xcode

window.

	 17.	 Click the ViewController.swift file in the Navigator pane.

	 18.	 Add the following underneath the import UIKit line:

import AVFoundation

	 19.	 Add the following underneath the classViewController line to

create a variable that represents the AVAudioPlayer:

var audioPlayer: AVAudioPlayer!

	 20.	 Drag and drop an audio file from the Finder window into the

Navigator pane as shown in Figure 12-6. Xcode displays a window

for different options in adding a file to a project.

Figure 12-6.  Adding an audio file to an Xcode project

	 21.	 Click the Finish button. Notice that your audio file now appears in

the Navigator pane.

	 22.	 Type the following function underneath the audioPlayer variable

as follows:

func loadAudioFile() {

 �guard let audioFilePath = Bundle.main.path(forResource:

"Streetlife", ofType: "mp3") else {

 print("Audio file not found")

 return

 }

Chapter 12 Playing Audio and Video

320

 let audioFileUrl = NSURL.fileURL(withPath: audioFilePath)

 do {

 �audioPlayer = try AVAudioPlayer(contentsOf: audioFileUrl,

fileTypeHint: nil)

 audioPlayer.numberOfLoops = 0

 } catch {

 print ("AVAudioPlayer error = \(error)")

 }

}

The preceding code creates a constant to represent the audio file

named “Streetlife” that’s stored in the .mp3 file format (identified

by its .mp3 file extension). Replace this file name and extension

with the name and file type of your own audio file that you added

to the Navigator pane in step 20.

The guard statement loads the audio file into a constant called

audioFilePath to make sure that the audio file exists. If the audio

file does exist, it creates a path to that audio file (audioFileUrl) and

then loads that audio file into the audioPlayer variable. Otherwise

it prints an error message.

Finally, notice the numberOfLoops property, which is set to 0.

This property defines how many times the audio file plays after

playing once, so a value of 0 means the audio file plays exactly

once and then stops, a value of 1 means the audio file plays once

and then plays one more time, a value of 2 means the audio file

plays once and then plays two more times, and so on.

If the value of numberOfLoops is set to a negative number, the

audio file will loop endlessly, which can be handy for background

music while your app runs.

	 23.	 Modify the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 loadAudioFile()

}

Chapter 12 Playing Audio and Video

321

The viewDidLoad file runs as soon as the view loads in memory.

Then it calls the loadAudioFile to load the audio file into memory.

	 24.	 Edit the pauseAudio IBAction method as follows:

@IBAction func pauseAudio(_ sender: UIBarButtonItem) {

 audioPlayer.pause()

}

	 25.	 Edit the playAudio IBAction method as follows:

@IBAction func playAudio(_ sender: UIBarButtonItem) {

 audioPlayer.play()

}

	 26.	 Edit the stopAudio IBAction method as follows:

@IBAction func stopAudio(_ sender: UIBarButtonItem) {

 audioPlayer.stop()

 loadAudioFile()

}

This stopAudio IBAction method stops the audio and then reloads

it to set it back to the beginning. The entire ViewController.swift

file should look like this:

import UIKit

import AVFoundation

class ViewController: UIViewController {

 var audioPlayer: AVAudioPlayer!

 func loadAudioFile() {

 �guard let audioFilePath = Bundle.main.path(forResource:

"Streetlife", ofType: "mp3") else {

 print("Audio file not found")

 return

 }

Chapter 12 Playing Audio and Video

322

 let audioFileUrl = NSURL.fileURL(withPath: audioFilePath)

 do {

 �audioPlayer = try AVAudioPlayer(contentsOf:

audioFileUrl, fileTypeHint: nil)

 audioPlayer.numberOfLoops = 0

 } catch {

 print ("AVAudioPlayer error = \(error)")

 }

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 loadAudioFile()

 }

 @IBAction func pauseAudio(_ sender: UIBarButtonItem) {

 audioPlayer.pause()

 }

 @IBAction func playAudio(_ sender: UIBarButtonItem) {

 audioPlayer.play()

 }

 @IBAction func stopAudio(_ sender: UIBarButtonItem) {

 audioPlayer.stop()

 loadAudioFile()

 }

}

	 27.	 Click the Run button or choose Product ➤ Run. The Simulator

appears, displaying the Toolbar and the pause, play, and stop

buttons.

	 28.	 Click the play button. The Simulator starts playing your audio file.

	 29.	 Click the pause button. The Simulator halts playing of your

audio file.

Chapter 12 Playing Audio and Video

323

	 30.	 Click the play button. The Simulator plays the audio file starting

from the point where it was paused.

	 31.	 Click the stop button. The Simulator stops playing the audio file.

	 32.	 Click the play button. Notice now the Simulator starts playing the

audio file from the beginning again.

	 33.	 Click the stop button.

	 34.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Experiment with different audio files and file formats such as a .wav or .mov

audio file. Remember to modify your code to use the exact name and file format

of each new audio file you test in this project. Also experiment with changing the

numberOfLoops property defined in the loadAudioFile() function. By changing the value

of numberOfLoops, you can make the audio file play multiple times.

�Playing Video
Videos can display tutorials or tips on how to use an app. Just keep in mind that video

files tend to be much larger than audio files, so you’ll generally want to use short videos

to avoid taking up too much space.

To play videos, your app needs the AVKit framework. Then you need to retrieve the

path of the video file by defining the video file name and file extension such as “SaturnV”

as the file name and “mov” as the file extension like this:

let videoFilePath = Bundle.main.path(forResource: "SaturnV", ofType: "mov")

After retrieving the path of a video file, you can then use the AVPlayer to play the

video file. To display the video along with controls to let you fast-forward, pause, or

rewind, you can use the AVPlayerViewController. To complete the following exercise,

you’ll need a video file. You can record your own videos using the QuickTime Player on

a Macintosh or record a video on an iOS device such as an iPhone or iPad. You can also

find free video files at the following sites:

•	 nasa.gov

•	 publicdomainfiles.com

•	 archive.org

Chapter 12 Playing Audio and Video

http://nasa.gov
http://publicdomainfiles.com
http://archive.org

324

To see how to play a video, follow these steps:

	 1.	 Create a new iOS project using the Single View App template and

name this new project PlayVideoApp. This creates a single view

for the user interface.

	 2.	 Click the Main.storyboard file in the Navigator pane. Xcode

displays the single view.

	 3.	 Click the Library icon to open the Object Library window, and

then drag and drop a button on the view.

	 4.	 Double-click the button, type Play Video, and press Enter.

	 5.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the button.

	 6.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the ViewController.swift file.

	 7.	 Move the mouse pointer over the Play Video button, hold down

the Control key, and Ctrl-drag just above the last curly bracket at

the bottom of the ViewController.swift file.

	 8.	 Release the Control key and the left mouse button. A popup

window appears.

	 9.	 Click in the Name text field, type playVideo, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a playVideo IBAction method.

	 10.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 11.	 Click the ViewController.swift file in the Navigator pane.

	 12.	 Add the following underneath the import UIKit line:

import AVKit

Chapter 12 Playing Audio and Video

325

	 13.	 Add the following underneath the class ViewController line:

var player:AVPlayer?

var vcPlayerController = AVPlayerViewController()

	 14.	 Drag and drop a video file into the Navigator pane. When a dialog

appears displaying options for copying the file into your project,

click the Finish button. Note the name of the video file (such as

“SaturnV”) and its file extension (such as “.mov”).

	 15.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 �guard let videoFilePath = Bundle.main.path(forResource:

"SaturnV", ofType: "mov") else {

 print ("Video file not found")

 return

 }

 let videoURL = NSURL(fileURLWithPath: videoFilePath)

 player = AVPlayer(url: videoURL as URL)

 vcPlayerController.player = player

}

The guard statement makes sure that the video file exists. Make

sure you substitute the name and file extension of your own video

file here to replace the preceding example, which loads a video file

called SaturnV.mov.

If the guard statement finds the video file defined by its name

and file extension, the next step is to load that path as an NSURL

into the videoURL constant. This videoURL constant is then

passed to the AVPlayer so it knows which file to play. Finally, the

AVPlayerViewController (defined by vcPlayerController) loads the

AVPlayer and displays it on the screen.

Chapter 12 Playing Audio and Video

326

	 16.	 Edit the playVideo IBAction method as follows:

@IBAction func playVideo(_ sender: UIButton) {

 present(self.vcPlayerController, animated: true, completion: {

 self.vcPlayerController.player?.play()

 })

}

This displays the vcPlayerController on the screen, and as soon as

it fills the screen, it starts playing the video.

	 17.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 18.	 Click the Play Video button. The video player appears and starts

playing the video file you defined. Notice that the video player

displays controls that let you pause, fast-forward, rewind, or stop

the video as shown in Figure 12-7.

Chapter 12 Playing Audio and Video

327

	 19.	 Choose Simulator ➤ Quit Simulator.

�Playing Videos on the Internet
One huge problem with videos is that each video file takes up a large amount of space.

Just adding one or two videos to your app will greatly bloat its size. As an alternative, you

can store videos on a video-sharing site like YouTube. Then you can simply provide a

link to that video that your app can run.

The advantage of using a link is that it avoids bloating the size of your app with large

video files. The disadvantage is that unlike a stored video file, an app may not be able

to play a video if the iOS device does not have an Internet connection through WiFi or

through a cellular telephone network.

Figure 12-7.  Playing a video on an iOS device

Chapter 12 Playing Audio and Video

328

The basic idea to playing Internet videos in an app involves using the AVKit

framework to play videos and the WebKit framework to access web pages. Then you

need to add a WebKit View to your user interface, which essentially adds a browser to

your app. Now you just need to define the video URL to load.

To see how to play a video, follow these steps:

	 1.	 Create a new iOS project using the Single View App template and

name this new project PlayInternetVideoApp. This creates a single

view for the user interface.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Add the following under the import UIKit line:

import WebKit

import AVKit

	 4.	 Click the Main.storyboard file in the Navigator pane.

	 5.	 Click the Library icon to open the Object Library window, and

then drag and drop a WebKit View onto the user interface as

shown in Figure 12-8.

Chapter 12 Playing Audio and Video

329

Note  Make sure you drag and drop a WebKit View and not a WebKit View, which
has been deprecated and is far less versatile.

	 6.	 Resize the WebKit View to fill the screen.

	 7.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the WebKit View.

Figure 12-8.  Adding a WebKit View

Chapter 12 Playing Audio and Video

330

	 8.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard file side by side with

the ViewController.swift file.

	 9.	 Move the mouse pointer over the WebKit View, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 10.	 Release the Control key and the left mouse button. A popup

window appears.

	 11.	 Click in the Name text field, type webView, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var webView: WKWebView!

	 12.	 Add the following underneath the IBOutlet:

var myView = WKWebView()

	 13.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 14.	 Click the ViewController.swift file in the Navigator pane.

	 15.	 Open your browser and find a YouTube video you want to display

in your app.

	 16.	 Right-click the YouTube video. A popup menu appears as shown

in Figure 12-9.

Chapter 12 Playing Audio and Video

331

Figure 12-9.  Getting the video URL

	 17.	 Choose Copy video URL.

	 18.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 if let url = URL(string: "Your video URL goes here") {

 let request = URLRequest(url: url)

 webView.load(request)

 } else {

 print ("Couldn't find file to load")

 }

}

Make sure you replace the text “Your video URL goes here”

with the video URL of the file you copied in step 17. The entire

ViewController.swift file should look like this with your video URL

replacing the string “Your video URL goes here”:

import UIKit

import WebKit

import AVKit

class ViewController: UIViewController {

 @IBOutlet var webView: WKWebView!

 var myView = WKWebView()

Chapter 12 Playing Audio and Video

332

 override func viewDidLoad() {

 super.viewDidLoad()

 if let url = URL(string: "https://youtu.be/bivXt0hVufk") {

 let request = URLRequest(url: url)

 webView.load(request)

 } else {

 print ("Couldn't find file to load")

 }

 }

}

	 19.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, displaying your chosen video.

	 20.	 Click the Play button on the video to watch it play. WebKit View

essentially adds a browser to your app.

	 21.	 Chose Simulator ➤ Quit Simulator.

�Summary
Any app can enhance the user’s experience by playing audio or video. Audio files can

play in the background, while an app runs or plays only when the user requests it. The

audio file can play once, multiple times, or repeat continuously in a loop.

Video files let you display movies that users can watch. Because video files can take

up large amounts of space, use video files sparingly or else the size of your app can

dramatically increase in size each time you add another video file to an app.

To avoid gobbling up large amounts of storage space for video files, another

alternative is to play videos off the Internet. This keeps an app’s size down because it

doesn’t need to load one or more video files. However, the drawback is that the app can

only play a video if it can connect to the Internet through WiFi or a fast cellular telephone

network. Audio and video can enhance a user’s experience with an app.

Chapter 12 Playing Audio and Video

333
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_13

CHAPTER 13

Using the Camera
One of the most useful accessories on every smartphone has been the camera. While

early smartphone cameras could only capture low-resolution images, today’s cameras

on the iPhone can capture amazingly high-quality images with resolutions that rival

professional cameras of just a few generations ago. Not surprisingly, the camera is one of

the most popular hardware accessories for an app to access and control.

To access the camera in an iOS device, you need to follow several steps:

•	 Set privacy settings in the Info.plist file to request access to both the

camera and the photo library.

•	 Use the image picker controller to access the camera (and check to

make sure the iOS device has a camera).

•	 Display the image on the screen so the user can capture an image.

•	 Optionally save the image in the photo library.

Note  You can only test the camera on a real iOS device such as an iPhone or
iPad because the Simulator cannot duplicate a camera.

�Setting Privacy Settings
By default, no app can access the camera in an iOS device for privacy reasons. This

prevents apps from recording images without the user’s knowledge. So if an app wants to

access the camera, it must request permission. There are two privacy settings you need

to modify in the Info.plist file:

•	 Privacy – Camera Usage Description

•	 Privacy – Photo Library Additions Usage Description

334

The Privacy – Camera Usage Description key in the Info.plist file requests permission

to access the camera. The Privacy – Photo Library Additions Usage Description key

requests permission to store images in the Photos library. Only if the user grants

permission to accessing the camera and the photo library can an app retrieve images

through the camera and save them in the Photos library.

To see how to set privacy settings in an app, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

CameraApp.

	 2.	 Click the Info.plist file in the Navigator pane.

	 3.	 Move the mouse pointer over the last row displayed.

A + and – button appears.

	 4.	 Click the + button to add a new row in the Info.plist file. Xcode

displays a popup menu as shown in Figure 13-1.

	 5.	 Scroll down the list and choose Privacy – Camera Usage

Description.

	 6.	 Click in the Value column and type any arbitrary text to display to

the user such as “Need to access camera”.

	 7.	 Move the mouse pointer over the last row until a + and – button

appears.

Figure 13-1.  An app needs to request permission in the Info.plist file to access the
camera and photo library

Chapter 13 Using the Camera

335

	 8.	 Click the + button to add a new row. Xcode displays a popup

menu (see Figure 13-1).

	 9.	 Scroll down the list and choose Privacy – Photo Library Additions

Usage Description.

	 10.	 Click in the Value column and type any arbitrary text to display to

the user such as “Need to access photo library”. You should now

have two privacy keys in the Info.plist as shown in Figure 13-2.

Once you’ve defined the two privacy settings to access the camera and photo library,

you’ll be ready to design the user interface and write Swift code.

�Checking for a Camera
Most iOS devices come with a built-in camera. However, older iOS devices, such as

the first iPod touch and early iPad models, did not come with a camera. In case your

app may run on older iOS devices without a camera, you need to check to make sure a

camera is available.

Figure 13-2.  Accessing the camera and photo library requires setting two privacy
keys in the Info.plist file

Chapter 13 Using the Camera

336

To access the camera in an iOS device, we need to use the UIImagePickerController.

This allows us to not only detect if a camera exists but also to specify which camera to

use, the front or rear camera. If you don’t specify a camera to use, your app will default to

using the rear camera.

To check if a camera exists, follow these steps:

	 1.	 Make sure the CameraApp is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Edit the class ViewController line as follows:

class ViewController: UIViewController, UIImagePicker

ControllerDelegate, UINavigationControllerDelegate {

This allows the ViewController.swift file to access the camera

through the image picker controller and view the image that the

camera currently sees.

	 4.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 if !UIImagePickerController.isSourceTypeAvailable(.camera){

 �let alertController = UIAlertController.init(title: nil,

message: "No camera available.", preferredStyle: .alert)

 �let okAction = UIAlertAction.init(title: "OK", style:

.default, handler: {(alert: UIAlertAction!) in

 })

 alertController.addAction(okAction)

 self.present(alertController, animated: true, completion: nil)

 }

}

This code simply checks if a camera is available. If it is not true that a camera is

available, then it displays “No camera available” in an alert that pops up on the screen.

In a shipping app, you’d also want the app to shut down if it lacks a camera.

Chapter 13 Using the Camera

337

�Designing a Simple User Interface
The user interface for our CameraApp project will consist of the following:

•	 Two buttons

•	 A single image view

One button will access the camera and let us take a picture. After we take a picture,

we can show that picture in the image view. Now we’ll be able to use the second button

to save the picture into the Photos library.

To create the user interface for our CameraApp project, follow these steps:

	 1.	 Make sure the CameraApp project is loaded into Xcode.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop two buttons and an

image view onto the user interface.

	 4.	 Double-click one button, type Take Picture, and press Enter.

	 5.	 Double-click the second button, type Save Picture, and press

Enter. The user interface should look similar to Figure 13-3.

Figure 13-3.  The user interface of the CameraApp project

Chapter 13 Using the Camera

338

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the buttons and image view.

	 7.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 8.	 Move the mouse pointer over the image view, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 9.	 Release the Control key and the left mouse button. A popup

window appears.

	 10.	 Click in the Name text field, type imageView, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var imageView: UIImageView!

	 11.	 Move the mouse pointer over the Take Picture button, hold down

the Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 12.	 Release the Control key and the left mouse button. A popup

window appears.

	 13.	 Click in the Name text field, type takePicture, and click the

Connect button. Xcode creates a takePicture IBAction method.

	 14.	 Move the mouse pointer over the Save Picture button, hold down

the Control key, and Ctrl-drag above the last curly bracket at the

bottom of the ViewController.swift file.

	 15.	 Release the Control key and the left mouse button. A popup

window appears.

	 16.	 Click in the Name text field, type savePicture, and click the

Connect button. Xcode creates a savePicture IBAction method.

Chapter 13 Using the Camera

339

�Taking a Picture
Before taking a picture, we first verify that the device has a camera. Then we use

UIImagePickerController and define its source to be the camera in the iOS device. By

default, the UIImagePickerController will use the rear camera, but if we want to specify

the front camera, we’ll need to use the following:

 let picker = UIImagePickerController()

 picker.cameraDevice = UIImagePickerController.CameraDevice.front

After we take a picture and capture an image, we need to store that image in the

image view and dismiss the camera view.

To see how to take a picture and display it in the image view, follow these steps:

	 1.	 Make sure the CameraApp project is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Edit the takePicture IBAction method as follows:

@IBAction func takePicture(_ sender: UIButton) {

 �if (UIImagePickerController.isSourceTypeAvailable(UIImagePicke

rController.SourceType.camera)){

 let picker = UIImagePickerController()

 picker.delegate = self

 picker.sourceType = UIImagePickerController.SourceType.camera

 //�picker.cameraDevice = UIImagePickerController.CameraDevice.

front

 self.present(picker, animated: true, completion: nil)

 }

}

The if statement checks to make sure a camera exists in the iOS

device. If so, then it creates a UIImagePickerController object,

sets the delegate to the ViewController.swift file, and accesses

the camera through the image picker controller. By default, the

camera chosen will be the rear camera, but we can specify the

front camera. Finally, the image displayed in the camera appears

on the screen.

Chapter 13 Using the Camera

340

Now we need to write two additional functions. First, the camera

view will display a Cancel button so we need to make this Cancel

button hide the camera view. Second, if the user takes a picture,

we need to hide the camera view and display this image in the

image view.

	 4.	 Add the following two functions in the ViewController.swift file:

�func imagePickerController(_ picker: UIImagePickerController,

didFinishPickingMediaWithInfo info: [UIImagePickerController.

InfoKey : Any]) {

 �if let capturedImage = info[UIImagePickerController.InfoKey.

originalImage] as? UIImage {

 picker.dismiss(animated: true, completion: nil)

 imageView.contentMode = .scaleToFill

 imageView.image = capturedImage

 }

}

func imagePickerControllerDidCancel(_ picker:

UIImagePickerController) {

 picker.dismiss(animated: true, completion: nil)

}

�Saving a Picture
After the user takes a picture with the camera, our app displays that image in the image

view. Now the user has the option of saving this image in the Photos library.

To save images in an image view and store them in the Photos library, follow these steps:

	 1.	 Make sure the CameraApp project is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Modify the savePicture IBAction method as follows:

@IBAction func savePicture(_ sender: UIButton) {

 let imageData = imageView.image!.pngData()

 let compressedImage = UIImage(data: imageData!)

Chapter 13 Using the Camera

341

 UIImageWriteToSavedPhotosAlbum(compressedImage!, nil, nil, nil)

 �let alert = UIAlertController(title: "Saved", message: "Your

image has been saved", preferredStyle: .alert)

 �let okAction = UIAlertAction(title: "OK", style: .default,

handler: nil)

 alert.addAction(okAction)

 self.present(alert, animated: true, completion: nil)

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController,

UIImagePickerControllerDelegate, UINavigationControllerDelegate {

 @IBOutlet var imageView: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 if !UIImagePickerController.isSourceTypeAvailable(.camera){

 �let alertController = UIAlertController.init(title: nil,

message: "No camera available.", preferredStyle: .alert)

 �let okAction = UIAlertAction.init(title: "OK",

style: .default, handler: {(alert: UIAlertAction!) in

 })

 alertController.addAction(okAction)

 �self.present(alertController, animated: true,

completion: nil)

 }

 }

 �func imagePickerController(_ picker: UIImagePickerController,

didFinishPickingMediaWithInfo info: [UIImagePickerController.

InfoKey : Any]) {

 �if let capturedImage = info[UIImagePickerController.

InfoKey.originalImage] as? UIImage {

Chapter 13 Using the Camera

342

 picker.dismiss(animated: true, completion: nil)

 imageView.contentMode = .scaleToFill

 imageView.image = capturedImage

 }

 }

 �func imagePickerControllerDidCancel(_ picker:

UIImagePickerController) {

 picker.dismiss(animated: true, completion: nil)

 }

 @IBAction func takePicture(_ sender: UIButton) {

 �if (UIImagePickerController.isSourceTypeAvailable(UIImage

PickerController.SourceType.camera)){

 let picker = UIImagePickerController()

 picker.delegate = self

 �picker.sourceType = UIImagePickerController.

SourceType.camera

 /�/picker.cameraDevice = UIImagePickerController.

CameraDevice.front

 self.present(picker, animated: true, completion: nil)

 }

 }

 @IBAction func savePicture(_ sender: UIButton) {

 let imageData = imageView.image!.pngData()

 let compressedImage = UIImage(data: imageData!)

 UIImageWriteToSavedPhotosAlbum(compressedImage!, nil, nil, nil)

 �let alert = UIAlertController(title: "Saved", message:

"Your image has been saved", preferredStyle: .alert)

 �let okAction = UIAlertAction(title: "OK", style: .default,

handler: nil)

 alert.addAction(okAction)

 self.present(alert, animated: true, completion: nil)

 }

}

Chapter 13 Using the Camera

343

	 4.	 Connect an iOS device to your Macintosh through a USB cable.

	 5.	 Click the Run button or choose Product ➤ Run. The CameraApp’s

screen appears.

	 6.	 Tap the Take Picture button. The camera view appears displaying

a Cancel button, a round white button to take a picture, and

a camera icon that lets you switch between the rear and front

camera as shown in Figure 13-4.

	 7.	 Tap the round white button to capture an image. Your chosen

image now appears in the image view on the user interface.

	 8.	 Tap the Save Picture button. An alert appears, letting you know

that the image has been saved in your Photos library.

Figure 13-4.  The camera view provides buttons for controlling the camera

Chapter 13 Using the Camera

344

	 9.	 Click the Stop button in Xcode.

	 10.	 Open the Photos app on your iOS device and you’ll see that your

image has been saved to the Photos library.

�Summary
The camera has steadily improved over the years to the point where many professional

photographers even use the iPhone’s camera to take pictures instead of using a

dedicated camera. Because of the popularity of photography on the iPhone, all current

models of the iPad also include a camera. With cameras available in all the latest iOS

devices, it’s important to know how to access the camera in any iOS device.

Just keep in mind that if your app runs on older iOS devices such as early iPad

models or the first-generation iPod touch, there won’t be a camera available. Even

though most iOS devices will come with a camera, make sure your app doesn’t assume a

camera exists so check for the existence of a camera before trying to capture a picture.

After taking a picture, save it in the Photos library. By adding the ability to access an

iOS device’s camera, your app can take full advantage of the user’s iOS device.

Chapter 13 Using the Camera

345
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_14

CHAPTER 14

Using WebKit
If you ever used the Safari browser on a Macintosh, iPhone, or iPad, you’ve used an open

source framework called WebKit (webkit.org). To give your apps the power of a complete

browser, you can include the WebKit View. By using WebKit View, your apps can display

web pages from anywhere on the Internet or simply display web pages stored within

your app as HTML (HyperText Markup Language) files.

Note  Xcode actually provides two objects that can display HTML web pages: Web
View and WebKit View. Web View is an older and less versatile object that Apple
no longer supports. As a result, always use WebKit View. If you ever modify older
projects, replace Web View with WebKit View instead.

�Displaying Web Pages from the Internet
Because WebKit View represents a complete browser, adding WebKit View to your app

can give that app the ability to display any web pages available on the Internet.

To see how to display web pages from the Internet, follow these steps:

	 1.	 Create a new iOS Single View App project and name it WebKitApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a text field and two

buttons and a WebKit View onto the user interface. Resize the

text field and WebKit View so the text field appears at the top and

extends across the width and the WebKit View fills the rest of the

view as shown in Figure 14-1.

http://webkit.org

346

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the text field and WebKit

View.

	 5.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 6.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 7.	 Release the Control key and the left mouse button. A popup

window appears.

Figure 14-1.  The user interface of the WebKitApp project

Chapter 14 Using WebKit

347

	 8.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 9.	 Move the mouse pointer over the WebKit View, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 10.	 Release the Control key and the left mouse button. A popup

window appears.

	 11.	 Click in the Name text field, type webView, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var webView: WKWebView!

	 12.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 13.	 Click the ViewController.swift file in the Navigator pane.

	 14.	 Add the following underneath the import UIKit line:

import WebKit

	 15.	 Edit the class ViewController line as follows:

class ViewController: UIViewController, UITextFieldDelegate {

This adds the UITextField Delegate to allow the text field to detect

when editing has been completed by detecting when the user

presses the Return or Enter key.

	 16.	 Add the following below the IBOutlets:

var myView = WKWebView()

Chapter 14 Using WebKit

348

	 17.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 myTextField.delegate = self

 myTextField.clearButtonMode = .always

 lookupWebPage(address: "https://www.yahoo.com")

}

This defines the text field’s delegate as the ViewController.swift

file and displays a clear button at the far right of the text field so

users can clear the text in the text field easily. Finally, it calls a

function called lookupWebPage and sends it the web address of

https://www.yahoo.com.

Note  WebKit View only allows secure connections defined by https:// and
requires the complete spelling of the web site address such as www.yahoo.com
instead of yahoo.com.

	 18.	 Add the following function below the viewDidLoad method:

func lookupWebPage(address: String) {

 let url = URL(string: address)

 let request = URLRequest(url: url!)

 webView.load(request)

}

This function accepts a string (a web site address) and stores it as

a URL data type. Then it sends this URL address as a URLRequest,

which is then passed to the load method. Assuming the web site

address is valid, the web page will then appear inside the webView

(WebKit View).

Chapter 14 Using WebKit

https://www.yahoo.com
http://www.yahoo.com
http://yahoo.com

349

	 19.	 Add the following two functions to remove the virtual keyboard (if

it’s visible) when the user presses Return or Enter and sends the

text stored in the text field as a web site address to retrieve:

func textFieldDidEndEditing(_ textField: UITextField) {

 if let webAddress = myTextField.text {

 lookupWebPage(address: webAddress)

 }

}

func textFieldShouldReturn(_ textField: UITextField) -> Bool {

 textField.resignFirstResponder()

 return true

}

The textFieldDidEndEditing function will take whatever the user

typed into the text field and use that as a valid web site address.

Of course, this will only work if the text is a valid web site address

formatted like https://www.website.com.

The textFieldShouldReturn function runs the

resignFirstResponder, which hides the virtual keyboard if it’s

visible. Then it returns true, which means that the text field will

end editing when the user presses the Enter or Return key.

The entire ViewController.swift file should look like this:

import UIKit

import WebKit

class ViewController: UIViewController, UITextFieldDelegate {

 @IBOutlet var webView: WKWebView!

 @IBOutlet var myTextField: UITextField!

 var myView = WKWebView()

 override func viewDidLoad() {

 super.viewDidLoad()

 myTextField.delegate = self

Chapter 14 Using WebKit

https://www.website.com

350

 myTextField.clearButtonMode = .always

 lookupWebPage(address: "https://www.yahoo.com")

 }

 func lookupWebPage(address: String) {

 let url = URL(string: address)

 let request = URLRequest(url: url!)

 webView.load(request)

 }

 func textFieldDidEndEditing(_ textField: UITextField) {

 if let webAddress = myTextField.text {

 lookupWebPage(address: webAddress)

 }

 }

 func textFieldShouldReturn(_ textField: UITextField) -> Bool {

 textField.resignFirstResponder()

 return true

 }

}

	 20.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears. As long as your Macintosh has an Internet

connection, the WebKitApp displays the Yahoo web site as shown

in Figure 14-2.

Chapter 14 Using WebKit

351

	 21.	 Click in the text field at the top of the screen and type a web site

address (including https://) such as https://www.apple.com and

press Enter. The Simulator screen now shows Apple’s web site.

	 22.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Displaying HTML Files
While the WebKit View can display web pages off the Internet, it can also display HTML

files stored in the app itself. Since WebKit View is essentially a complete browser, it can

display fairly sophisticated HTML files to create interested visual effects within an app.

Figure 14-2.  The Yahoo web site displayed in the Simulator

Chapter 14 Using WebKit

https://www.apple.com

352

You can create an HTML file using a separate editor (such as Adobe Dreamweaver)

or you can create an HTML directly in Xcode. Dedicated HTML editors often let you

create web pages visually, while creating HTML files in Xcode requires typing HTML

commands.

To see how to create an HTML file in Xcode, follow these steps:

	 1.	 Create a new iOS Single View App project and name it HTMLApp.

	 2.	 Choose File ➤ New ➤ File. A template dialog appears.

	 3.	 Scroll down to the Other category and click the Empty icon as

shown in Figure 14-3.

Figure 14-3.  Choosing an Empty file to add in an Xcode project

	 4.	 Click the Next button. Another dialog appears, asking for

a file name.

	 5.	 Type readme.html and then click the Create button. Xcode adds

the readme.html file in the Navigator pane.

	 6.	 Click the readme.html file in the Navigator pane. The middle pane

of Xcode displays the Empty file along with line numbers.

Chapter 14 Using WebKit

353

	 7.	 Type the following:

<!DOCTYPE html>

<html>

 <body>

 <p>This text is bold</p>

 <p><i>This text is italic</i></p>

 �<p>This is what_{subscript} and

^{superscript} look like</p>

 </body>

</html>

	 8.	 Click the Main.storyboard file in the Navigator pane.

	 9.	 Add the following underneath the import UIKit line:

import WebKit

	 10.	 Click the Library icon and drag and drop a WebKit View onto the

user interface. You may want to resize the WebKit View so it takes

up more space.

	 11.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the WebKit View.

	 12.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 13.	 Move the mouse pointer over the WebKit View, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 14.	 Release the Control key and the left mouse button. A popup

window appears.

Chapter 14 Using WebKit

354

	 15.	 Click in the Name text field, type webView, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var webView: WKWebView!

	 16.	 Add the following underneath the IBOutlet:

var myView = WKWebView()

	 17.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 �if let url = Bundle.main.url(forResource: "readme",

withExtension: "html") {

 webView.loadFileURL(url, allowingReadAccessTo: url)

 }

}

This code first tries to load the readme.html file. Only if it can find

a readme.html file does it load it in the WebKit View.

	 18.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears and displays the contents of your readme.html

page on the screen.

	 19.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

	 20.	 Click the readme.html file in the Navigator pane.

	 21.	 Edit the readme.html file as follows to make the text larger and

add a button that allows the user to click it:

<!DOCTYPE html>

<html>

 <body>

 <p>This text is bold</p>

 <p><i>This text is italic</i></p>

Chapter 14 Using WebKit

355

 �<p>This is what_{subscript} and

^{superscript} look like</p>

 <h1>JavaScript example</h1>

 <button type="button"

 �onclick="document.getElementById('data').innerHTML =

Date()"

 style="font-size : 36px; width: 100%; height: 100px;">

 Click to display the current date and time.</button>

 <p id="data"></p>

 </body>

</html>

	 22.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears. Notice that the text now appears much larger.

	 23.	 Click the button to display the current date and time. The current

date and time appears as shown in Figure 14-4.

Chapter 14 Using WebKit

356

	 24.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

If you’re comfortable with HTML code, edit the readme.html file with more

sophisticated HTML code such as displaying tables and images.

�Summary
Adding a WebKit View to an app allows displaying HTML files whether stored locally

in an app or retrieved off the Internet. By displaying HTML files, a WebKit View can

create interesting visual effects and user interfaces that may not be easily created using

standard user interface objects. Best of all, experienced HTML developers can use their

HTML skills to create a sophisticated app with little extra coding.

When loading HTML files, always check to make sure the file exists and can load

inside a WebKit View. Displaying web pages or HTML files inside an app just gives you

one more way to create interesting user interfaces for your apps.

Figure 14-4.  Displaying JavaScript in a WebKit View

Chapter 14 Using WebKit

357
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_15

CHAPTER 15

Displaying Animation
Most user interfaces are static, which is fine as long as the user can easily find commands

and control the app. However to make a user interface visually interesting, consider

adding animation to your apps. Animation can be as simple as moving an item on the

screen or as sophisticated as displaying several seconds of multiple objects moving,

spinning, and changing color on the screen.

Animation can involve one or more of the following:

•	 Moving an item from one location to another

•	 Resizing an item

•	 Changing transparency

•	 Rotating an item

To create basic animation, we need to use this code:

 UIView.animate(withDuration: 2.0) {

 // animation code here

 }

User interface objects such as buttons and labels are based on the UIControl class,

which is based on UIView. So ultimately any user interface object can be animated as a

UIView. The numeric value defines how long to make the animation run measured in

seconds such as 2.0 seconds. The code inside the curly brackets then provides the actual

animation.

358

�Moving Items with Animation
To move an item, you need to define its starting and ending location. You can define

the ending location of an item by visually placing it on the user interface. Then you can

define the starting location through Swift code. Once you know where an item starts and

ends up, you can define how long you want the movement animation to last.

For this example, we want to animate items as soon as the user interface loads.

That means we need to define the initial location before the user interface loads. To do

this, we’ll need to specify the initial location in the viewWillAppear method, which runs

right before the user interface appears on the screen.

To see how to move items with animation, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

AnimationMoveApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a label, a text field, and

an image view onto the user interface. Resize the text field and

label.

	 4.	 Double-click the label, type This is a label, and press Enter. The

user interface should look similar to Figure 15-1.

Figure 15-1.  The user interface of the AnimationMoveApp project

	 5.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the label, text field, and

image view.

Chapter 15 Displaying Animation

359

	 6.	 Click the image view and choose View ➤ Inspectors ➤ Show

Attributes Inspector, or click the Attributes Inspector icon in the

upper right corner of the Xcode window.

	 7.	 Click the Background popup menu and choose a color such as

orange. This will make the image view easy to see when it moves.

	 8.	 Click View in the Document Outline, choose View ➤ Inspectors ➤

Show Attributes Inspector, or click the Attributes Inspector icon in

the upper right corner of the Xcode window.

	 9.	 Click the Background popup menu and choose a color such

as yellow. This will make it easier to see the label and text field

against a colored background.

	 10.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 11.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 12.	 Release the Control key and the left mouse button. A popup

window appears.

	 13.	 Click in the Name text field, type myLabel, and click the Connect

button. Xcode creates the following IBOutlet:

@IBOutlet var myLabel: UILabel!

	 14.	 Move the mouse pointer over the text field, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 15.	 Release the Control key and the left mouse button. A popup

window appears.

Chapter 15 Displaying Animation

360

	 16.	 Click in the Name text field, type myTextField, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myTextField: UITextField!

	 17.	 Move the mouse pointer over the image view, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 18.	 Release the Control key and the left mouse button. A popup

window appears.

	 19.	 Click in the Name text field, type myImageView, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var myImageView: UIImageView!

	 20.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 21.	 Click the ViewController.swift file in the Navigator pane.

	 22.	 Add the following viewWillAppear method:

override func viewWillAppear(_ animated: Bool) {

 myLabel.center.x -= view.bounds.width

 myTextField.center.x -= view.bounds.width

 myImageView.center.x -= view.bounds.width

}

Right before the view appears on the screen, this code moves the

label, text field, and image view to the left the exact width of the

entire view. This essentially hides the label, text field, and image

view from sight.

Chapter 15 Displaying Animation

361

If you wanted to move the label, text field, and image view to the

right side of the screen, you would simply add the view width to

the center of each item such as

override func viewWillAppear(_ animated: Bool) {

 myLabel.center.x += view.bounds.width

 myTextField.center.x += view.bounds.width

 myImageView.center.x += view.bounds.width

}

If you wanted to move the label, text field, and image view to the

top of the screen, you would simply subtract the view height to the

center of each item such as

override func viewWillAppear(_ animated: Bool) {

 myLabel.center.x -= view.bounds.height

 myTextField.center.x -= view.bounds.height

 myImageView.center.x -= view.bounds.height

}

	 23.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 UIView.animate(withDuration: 2.0) {

 self.myLabel.center.x += self.view.bounds.width

 self.myTextField.center.x += self.view.bounds.width

 self.myImageView.center.x += self.view.bounds.width

 }

The viewWillAppear method moved the label, text field, and

image view off to the left by the width of the view (which will

change depending on the iOS device the app runs on). The

viewDidLoad method now uses the UIView.animate method to

move the label, text field, and image view to the right by the width

of the view. This animation takes 2.0 seconds.

Chapter 15 Displaying Animation

362

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var myImageView: UIImageView!

 override func viewWillAppear(_ animated: Bool) {

 myLabel.center.x -= view.bounds.width

 myTextField.center.x -= view.bounds.width

 myImageView.center.x -= view.bounds.width

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 UIView.animate(withDuration: 2.0) {

 self.myLabel.center.x += self.view.bounds.width

 self.myTextField.center.x += self.view.bounds.width

 self.myImageView.center.x += self.view.bounds.width

 }

 }

}

	 24.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, and the label, text field, and image view slide out

from the left and onto the user interface as shown in Figure 15-2.

Chapter 15 Displaying Animation

363

	 25.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Customizing Animation with Delays and Options
Rather than have multiple items move at the same time, you may want them to move

individually. To do this, you need to introduce a delay for one or more animations, so

rather than starting immediately, an animation may wait a fixed amount of time (such

as 0.25 or 2.8 seconds) before running. By delaying animation, you can let one item

animate before another starts, or stagger animation among multiple items so they start

and finish animating at different times.

Figure 15-2.  The label, text field, and image view slide onto the user interface from
the left

Chapter 15 Displaying Animation

364

Normally animation runs just once and then stops. However, you can define two

additional options that cause the animation to repeat indefinitely or to run forward and

backward while repeating indefinitely. This can be useful to display animation to attract

the user’s attention.

The modified UIView.animate command to include delays and options looks like this:

 �UIView.animate(withDuration: 3.4, delay: 2.3, options: [.repeat,

.autoreverse], animations: {

 // animate code here

 }, completion: nil)

The withDuration defines how long the animation takes. Higher values take longer

while shorter values take less time. The delay defines how long to wait before running

the code inside the UIView.animate command.

The options can be listed individually (such as .repeat) or grouped in an array (such

as [.repeat, .autoreverse]). The animations area is where you type Swift code to animate

an item. The completion handler allows for a closure to run after the animation finishes.

If you don’t want any closure to run, then just set completion to nil.

To see how to add delays and options to animation, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

AnimationDelayApp.

	 2.	 Create the same user interface as the AnimationMoveApp project

(or just modify that project).

	 3.	 Create three IBOutlets for the label, text field, and image view as

follows:

@IBOutlet var myLabel: UILabel!

@IBOutlet var myTextField: UITextField!

@IBOutlet var myImageView: UIImageView!

	 4.	 Change the background color for both the view and the image

view to make them easier to see.

Chapter 15 Displaying Animation

365

	 5.	 Add the following viewWillAppear method:

override func viewWillAppear(_ animated: Bool) {

 myLabel.center.x -= view.bounds.width

 myTextField.center.x -= view.bounds.width

 myImageView.center.x -= view.bounds.width

}

	 6.	 Add the following in the viewDidLoad method:

UIView.animate(withDuration: 2.0) {

 self.myLabel.center.x += self.view.bounds.width

}

This animates the label exactly like the AnimateMoveApp project

to make it easier to see how the next two animations differ.

	 7.	 Add the following in the viewDidLoad method to delay animation

and repeat and autoreverse animation continually:

UIView.animate(withDuration: 3.4, delay: 2.3, options: [.repeat,

.autoreverse], animations: {

 self.myTextField.center.x += self.view.bounds.width

}, completion: nil)

	 8.	 Add the following in the viewDidLoad method to delay animation

and only repeat the animation:

�UIView.animate(withDuration: 1.4, delay: 3.5, options: .repeat,

animations: {

 self.myImageView.center.x += self.view.bounds.width

}, completion: nil)

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 @IBOutlet var myTextField: UITextField!

Chapter 15 Displaying Animation

366

 @IBOutlet var myImageView: UIImageView!

 override func viewWillAppear(_ animated: Bool) {

 myLabel.center.x -= view.bounds.width

 myTextField.center.x -= view.bounds.width

 myImageView.center.x -= view.bounds.width

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 UIView.animate(withDuration: 2.0) {

 self.myLabel.center.x += self.view.bounds.width

 }

 �UIView.animate(withDuration: 3.4, delay: 2.3, options:

[.repeat, .autoreverse], animations: {

 self.myTextField.center.x += self.view.bounds.width

 }, completion: nil)

 �UIView.animate(withDuration: 1.4, delay: 3.5, options:

.repeat, animations: {

 self.myImageView.center.x += self.view.bounds.width

 }, completion: nil)

 }

}

	 9.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears. Notice how the three different items appear

animated. The label slides into place and stops. The text field

slides right and then left. The image view slides right, disappears

from view, and repeats over and over again.

	 10.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Chapter 15 Displaying Animation

367

�Customizing Animation with Damping and Velocity
Another way to modify the movement of animated objects is to define a velocity and

a damping ratio. The velocity defines how fast an object moves, measured in seconds.

Higher values create faster movement, while lower values create slower movement.

The damping ratio creates a “spring” effect that makes a moving object appear

to oscillate. A value of 1.0 creates no oscillation, while values closer to 0 create much

greater oscillation.

The modified UIView.animate command to include velocity and damping looks

like this:

 �UIView.animate(withDuration: 2.0, delay: 0.5,

usingSpringWithDamping: 0.1, initialSpringVelocity: 0.5, options:

[.repeat, .autoreverse], animations: {

 // animate code here

 }, completion: nil)

To see how to add delays and options to animation, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

AnimationDampingApp.

	 2.	 Create the same user interface as the AnimationMoveApp project

(or just modify that project).

	 3.	 Create three IBOutlets for the label, text field, and image view as follows:

@IBOutlet var myLabel: UILabel!

@IBOutlet var myTextField: UITextField!

@IBOutlet var myImageView: UIImageView!

	 4.	 Change the background color for both the view and the image

view to make them easier to see.

	 5.	 Add the following in the viewDidLoad method to create ordinary

animation without velocity or damping to make it easy to see the

difference:

UIView.animate(withDuration: 4.5) {

 self.myLabel.center.x += self.view.bounds.width

}

Chapter 15 Displaying Animation

368

	 6.	 Add the following in the viewDidLoad method to add damping

and velocity:

UIView.animate(withDuration: 2.0, delay: 0.5,

usingSpringWithDamping: 0.75, initialSpringVelocity: 0.2, options:

[.repeat, .autoreverse], animations: {

 self.myTextField.center.x += self.view.bounds.width

}, completion: nil)

	 7.	 Add the following in the viewDidLoad method to see how

different damping and velocity values affect the animation:

UIView.animate(withDuration: 2.0, delay: 0.5,

usingSpringWithDamping: 0.1, initialSpringVelocity: 0.5, options:

[.repeat, .autoreverse], animations: {

 self.myImageView.center.x += self.view.bounds.width

}, completion: nil)

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var myImageView: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 UIView.animate(withDuration: 4.5) {

 self.myLabel.center.x += self.view.bounds.width

 }

 �UIView.animate(withDuration: 2.0, delay: 0.5,

usingSpringWithDamping: 0.75, initialSpringVelocity: 0.2,

options: [.repeat, .autoreverse], animations: {

 self.myTextField.center.x += self.view.bounds.width

 }, completion: nil)

Chapter 15 Displaying Animation

369

 �UIView.animate(withDuration: 2.0, delay: 0.5,

usingSpringWithDamping: 0.1, initialSpringVelocity: 0.5,

options: [.repeat, .autoreverse], animations: {

 self.myImageView.center.x += self.view.bounds.width

 }, completion: nil)

 }

}

	 8.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears. Notice how the three different items appear

animated. The label slides into place and stops. The text field

slides right and then left. The image view slides right and then left

with greater oscillation than the text field.

	 9.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Resizing Items with Animation
Besides moving an item from one location to another, you can also resize an item by

changing its width, height, or both its width and height. To change a user interface

object’s width or height, you need to specify the IBOutlet name of the object you want to

resize and then specify a width or height value change such as

IBOutletName.frame.size.width += value

IBOutletName.frame.size.height += value

To see how to resize user interface objects, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

AnimationResizeApp.

	 2.	 Create the same user interface as the AnimationMoveApp project

(or just modify that project).

	 3.	 Hold down the Command key and click the label, text field, and

image view to select them all.

	 4.	 Click the Align icon to display a popup window.

Chapter 15 Displaying Animation

370

	 5.	 Select the Horizontally in Container check box and click the Add 3

Constraints button as shown in Figure 15-3.

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Add Missing

Constraints in the bottom half of the submenu. Xcode adds

additional constraints to the label, text field, and image view.

	 7.	 Create three IBOutlets for the label, text field, and image view as

follows:

@IBOutlet var myLabel: UILabel!

@IBOutlet var myTextField: UITextField!

@IBOutlet var myImageView: UIImageView!

	 8.	 Change the background color for both the view and the image

view to make them easier to see.

Figure 15-3.  Adding horizontal constraints on the label, text field, and image view

Chapter 15 Displaying Animation

371

	 9.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 myLabel.text = "This is a label displaying text on a user interface."

 �UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {

 self.myLabel.frame.size.width += 25

 self.myLabel.frame.size.height += 25

 }, completion: nil)

 �UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {

 self.myTextField.frame.size.width += 50

 }, completion: nil)

 �UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {

 self.myImageView.frame.size.height += 20

 self.myImageView.frame.size.width += 20

 }, completion: nil)

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var myImageView: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 �myLabel.text = "This is a label displaying text on a user

interface."

Chapter 15 Displaying Animation

372

 �UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {

 self.myLabel.frame.size.width += 25

 self.myLabel.frame.size.height += 25

 }, completion: nil)

 �UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {

 self.myTextField.frame.size.width += 50

 }, completion: nil)

 �UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {

 self.myImageView.frame.size.height += 20

 self.myImageView.frame.size.width += 20

 }, completion: nil)

 }

}

	 10.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears. Notice the label, text field, and image view appear

to grow and shrink over and over again.

	 11.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Rotating Items with Animation
Rotating an item involves defining a rotation angle using the transform property and the

CGAffineTransform command as follows:

IBOutletName.transform = CGAffineTransform(rotationAngle: value)

The CGAffineTransform command rotates items by radians, so if you’re more

comfortable specifying angles in degrees, we need to convert degrees into radians using

a command from the GLKit framework like this:

import GLKit

Chapter 15 Displaying Animation

373

Once the GLKit framework is imported into a project, we can access the

GLKMathRadiansToDegrees function that accepts degrees and converts them to radians

like this:

GLKMathDegreesToRadians(45)

To see how to rotate user interface objects, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

AnimationResizeApp.

	 2.	 Create the same user interface as the AnimationMoveApp project

(or just modify that project).

	 3.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

additional constraints to the label, text field, and image view.

	 4.	 Create three IBOutlets for the label, text field, and image view as

follows:

@IBOutlet var myLabel: UILabel!

@IBOutlet var myTextField: UITextField!

@IBOutlet var myImageView: UIImageView!

	 5.	 Change the background color for both the view and the image

view to make them easier to see.

	 6.	 Add the following under the import UIKit line:

import GLKit

	 7.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 let rotateMe = GLKMathDegreesToRadians(45)

 �UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {

 �self.myLabel.transform = CGAffineTransform(rotationAngle:

CGFloat(rotateMe))

Chapter 15 Displaying Animation

374

 }, completion: nil)

 �UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {

 �self.myTextField.transform = CGAffineTransform(rotation

Angle: CGFloat(-rotateMe))

 }, completion: nil)

 �UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {

 �self.myImageView.transform = CGAffineTransform(rotation

Angle: CGFloat(rotateMe))

 }, completion: nil)

}

The entire ViewController.swift file should look like this:

import UIKit

import GLKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var myImageView: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 let rotateMe = GLKMathDegreesToRadians(45)

 �UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {

 �self.myLabel.transform = CGAffineTransform(rotation

Angle: CGFloat(rotateMe))

 }, completion: nil)

 �UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {

Chapter 15 Displaying Animation

375

 �self.myTextField.transform = CGAffineTransform(rotation

Angle: CGFloat(-rotateMe))

 }, completion: nil)

 �UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {

 �self.myImageView.transform = CGAffineTransform(rotation

Angle: CGFloat(rotateMe))

 }, completion: nil)

 }

}

	 8.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, and the animation begins on all three user

interface objects as shown in Figure 15-4.

Chapter 15 Displaying Animation

376

	 9.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Changing Transparency with Animation
Rather than move or rotate an item, you might want to change its appearance instead.

One way to do this is to change the transparency of an object. This can make an object

gradually disappear and reappear again.

To see how to change the transparency of a user interface objects, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

AnimationColorApp.

Figure 15-4.  Rotating a label, text field, and image view

Chapter 15 Displaying Animation

377

	 2.	 Create the same user interface as the AnimationMoveApp project

(or just modify that project).

	 3.	 Create three IBOutlets for the label, text field, and image view as

follows:

@IBOutlet var myLabel: UILabel!

@IBOutlet var myTextField: UITextField!

@IBOutlet var myImageView: UIImageView!

	 4.	 Change the background color for both the view and the image

view to make them easier to see.

	 5.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 �UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {

 self.myLabel.alpha = 0.0

 self.myLabel.backgroundColor = UIColor.lightGray

 }, completion: nil)

 �UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {

 self.myTextField.alpha = 0.0

 self.myTextField.backgroundColor = UIColor.green

 }, completion: nil)

 �UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {

 self.myImageView.alpha = 0.0

 }, completion: nil)

}

Chapter 15 Displaying Animation

378

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 @IBOutlet var myLabel: UILabel!

 @IBOutlet var myTextField: UITextField!

 @IBOutlet var myImageView: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 �UIView.animate(withDuration: 2.0, delay: 0.0, options:

[.repeat, .autoreverse], animations: {

 self.myLabel.alpha = 0.0

 self.myLabel.backgroundColor = UIColor.lightGray

 }, completion: nil)

 �UIView.animate(withDuration: 3.5, delay: 0.45, options:

[.repeat, .autoreverse], animations: {

 self.myTextField.alpha = 0.0

 self.myTextField.backgroundColor = UIColor.green

 }, completion: nil)

 �UIView.animate(withDuration: 2.5, delay: 1.5, options:

[.repeat, .autoreverse], animations: {

 self.myImageView.alpha = 0.0

 }, completion: nil)

 }

}

	 6.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, and the animation begins on all three user

interface objects as they appear and disappear.

	 7.	 Choose Simulator ➤ Quit Simulator.

Chapter 15 Displaying Animation

379

�Animating Transitions Between View Controllers
When an app has multiple views, it needs a way to switch from one view controller to

another. By using a navigation or tab bar controller, you can get a simple animation that

slides one view controller over the other, but you can also create your own animation for

transitions between view controllers.

To see how to create custom animation transitions between view controllers, follow

these steps:

	 1.	 Create a new iOS Single View App project and name it

AnimationTransitionApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a button anywhere on

the user interface.

	 4.	 Double-click this button, type Show, and press Enter.

	 5.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the button.

	 6.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 7.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 8.	 Release the Control key and the left mouse button. A popup

window appears.

	 9.	 Click in the Name text field, type openView, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates an openView IBAction method.

	 10.	 Click the Library icon and drag and drop a View Controller in the

storyboard.

Chapter 15 Displaying Animation

380

	 11.	 Move the mouse pointer over the yellow circle at the top of the

first view controller, hold down the Control key, and Ctrl-drag

anywhere over the second view controller as shown in Figure 15-5.

	 12.	 Release the Control key and the left mouse button. A popup

window appears as shown in Figure 15-6.

Figure 15-6.  Choosing a Custom segue

Figure 15-5.  Ctrl-dragging from the first view controller to the second view controller

Chapter 15 Displaying Animation

381

	 13.	 Choose Custom. Xcode draws a segue connecting the two view

controllers.

	 14.	 Click View under the second view controller in the Document

Outline.

	 15.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 16.	 Click the Background popup menu and choose a color such as

orange. This will make the second view controller easy to see

when it appears.

	 17.	 Click the Library icon and drag and drop a button on the second

view controller.

	 18.	 Double-click this button, type Hide, and press Enter.

	 19.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the button.

	 20.	 Choose File ➤ New ➤ File. A template dialog appears.

	 21.	 Choose Cocoa Touch Class under the iOS category and click the

Next button.

	 22.	 Click in the Class text field and type SecondViewController.

	 23.	 Click the Subclass of popup menu and choose UIViewController.

Then click the Next and Create button. Xcode adds the

SecondViewController.swift file to the Navigator pane.

	 24.	 Click the Main.storyboard file in the Navigator pane.

	 25.	 Click the yellow circle at the top of the second view controller to

select it.

	 26.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 27.	 Click the Class popup menu and choose SecondViewController.

Chapter 15 Displaying Animation

382

	 28.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

SecondViewController.swift file.

	 29.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

SecondViewController.swift file.

	 30.	 Release the Control key and the left mouse button. A popup

window appears.

	 31.	 Click in the Name text field, type dismissButton, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates an dismissButton IBAction method.

	 32.	 Edit the dismissButton IBAction method as follows:

@IBAction func dismissButton(_ sender: UIButton) {

 dismiss(animated: true, completion: nil)

}

	 33.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 34.	 Click File ➤ New ➤ File. A template dialog appears.

	 35.	 Choose Cocoa Touch Class under the iOS category and click the

Next button.

	 36.	 Click in the Class text field and type CustomSegue as shown in

Figure 15-7.

	 37.	 Click the Subclass of popup menu and choose UIStoryboardSegue

as shown in Figure 15-7.

Chapter 15 Displaying Animation

383

	 38.	 Click the Next and Create button. Xcode adds the

SecondViewController.swift file to the Navigator pane.

	 39.	 Click the Main.storyboard file in the Navigator pane.

	 40.	 Click Custom segue to “View Controller” in the Document

Outline.

	 41.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 42.	 Click in the Identifier text field and type custom. (This can be any

arbitrary text.)

	 43.	 Click the Class popup menu and choose CustomSegue as shown

in Figure 15-8.

Figure 15-7.  Creating a UIStoryboardSegue .swift class file

Chapter 15 Displaying Animation

384

	 44.	 Click the ViewController.swift file in the Navigator pane.

	 45.	 Edit the openView IBAction method as follows:

@IBAction func openView(_ sender: UIButton) {

 self.performSegue(withIdentifier: "custom", sender: self)

}

The entire ViewController.swift file should look like this:

import UIKit

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 @IBAction func openView(_ sender: UIButton) {

 self.performSegue(withIdentifier: "custom", sender: self)

 }

}

Figure 15-8.  Adding an Identifier and Class to the segue

Chapter 15 Displaying Animation

385

The entire SecondViewController.swift file should look like this:

import UIKit

class SecondViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 @IBAction func dismissButton(_ sender: UIButton) {

 dismiss(animated: true, completion: nil)

 }

}

At this point, we’ve created the basic structure for defining an animated transition

between the two view controllers. The final step involves defining this animation in the

CustomSegue.swift file.

Creating a custom transition involves creating a segue between two view controllers

and giving it a name. Then that segue needs its own .swift file that defines the actual

animation between the two view controllers. This segue .swift file defines the starting

and ending point of the animation. Some different ways to transition between view

controllers include

•	 Sliding the second view controller over the first from different angles

•	 Scaling the second view controller so it appears to grow and cover the

first view controller

•	 Rotating the second view controller into place over the first view

controller

When sliding the second view controller over the first, you need to define an x and

y starting and ending point for the upper left corner of the second view controller. The

origin (0,0) is defined by the upper left corner of the screen as shown in Figure 15-9.

Chapter 15 Displaying Animation

386

The starting point of the second view controller defines the upper left corner, which

should place it off the screen. If you wanted the second view controller to slide into place

from the bottom right corner, you would need to define its starting point at the bottom

right corner like this:

secondVC.view.transform = CGAffineTransform(translationX: firstVC.view.

bounds.width, y: firstVC.view.bounds.height)

Then the ending point of the second view controller needs to be the origin (0,0)

like this:

secondVC.view.transform = CGAffineTransform(translationX: 0.0, y: 0.0)

No matter what starting point you define for the second view controller, its ending

point will always be the origin (0,0). By defining different values for the x and y starting

point, you can make the second view controller slide into place from different angles as

shown in Figure 15-10.

Figure 15-9.  The origin (0,0) appears in the upper left corner of the screen

Chapter 15 Displaying Animation

387

Figure 15-10.  The ending point is always (0,0), but the starting point defines the
upper left corner position

Scaling involves changing the width (x) and height (y) of the second view controller.

A scaling value of 0 means the size of the second view controller is also zero, making the

second view controller invisible. A scaling value of 1 means the size of the second view

controller is its normal size. So animation involves defining a scaling value of 0 and an

ending value of 1 like this:

secondVC.view.transform = CGAffineTransform(scaleX: 0.0, y: 0.0)

secondVC.view.transform = CGAffineTransform(scaleX: 1.0, y: 1.0)

Rotating means defining the starting rotation angle. The ending rotation angle is

always 0. Since the rotation angle is measured in radians, we can use degrees and then

convert those degrees into radians. That involves importing the GLKit framework and

using the GLKMathDegreesToRadians function like this:

GLKMathDegreesToRadians(45)

The starting rotation angle can be any value you wish such as

 let angle = GLKMathDegreesToRadians(125)

 �secondVC.view.transform = CGAffineTransform(rotationAngle:

CGFloat(angle))

Chapter 15 Displaying Animation

388

Then the ending rotation angle is always 0 like this:

secondVC.view.transform = CGAffineTransform(rotationAngle: 0.0)

To define animation for the transition between two view controllers,

follow these steps:

	 1.	 Click the CustomSegue.swift file in the Navigator pane.

	 2.	 Add the following under the import UIKit line:

import GLKit

	 3.	 Add the following function:

override func perform() {

}

	 4.	 Add these three lines inside the perform() function:

override func perform() {

 let firstVC = self.source

 let secondVC = self.destination

 firstVC.view.addSubview(secondVC.view)

The source is the first view controller, while the destination is

the second view controller that will transition onto the first view

controller. The third line adds the second view controller onto the

first view controller, making it visible.

	 5.	 Add the next lines in the perform() function:

 �//secondVC.view.transform = CGAffineTransform(translationX:

firstVC.view.bounds.width, y: firstVC.view.bounds.height)

 //secondVC.view.transform = CGAffineTransform(scaleX: 0.0, y: 0.0)

 let angle = GLKMathDegreesToRadians(125)

 �secondVC.view.transform = CGAffineTransform(rotationAngle:

CGFloat(angle))

 //secondVC.view.alpha = 0

Chapter 15 Displaying Animation

389

These lines define the starting point for the second view

controller. The first commented line is used to slide the second

view controller into position and places the second view

controller’s upper left corner at the bottom right corner of the first

view controller.

The second commented line is used to scale the second view

controller and defines its scale as 0, which makes the second view

controller so small that it’s invisible.

The two uncommented lines first convert 125 degrees into radians

and then define the starting rotation of the second view controller

at 125 degrees.

The last uncommented line defines a transparency of 0, which

makes the second view controller invisible.

	 6.	 Add the following animation code in the perform() function:

 UIView.animate(withDuration: 0.8, animations: {

 �//secondVC.view.transform = CGAffineTransform(translationX:

0.0, y: 0.0)

 //secondVC.view.transform = CGAffineTransform(scaleX: 1.0, y: 1.0)

 secondVC.view.transform = CGAffineTransform(rotationAngle: 0.0)

 //secondVC.view.alpha = 1

 }) { (finished) in

 firstVC.present(secondVC, animated: false, completion: nil)

 }

This UIView.animate command defines how long the animation

lasts (0.8 seconds) and includes code to define the ending point

for all transitions.

The first commented line moves the upper left corner of the

second view controller at (0,0), which is the upper left corner of

the screen.

The second commented line scales the second view controller

with a value of 1, which makes the second view controller appear

full size on the screen.

Chapter 15 Displaying Animation

390

The uncommented line defines the ending rotation angle as 0, which

makes the second view controller appear correctly on the screen.

The last commented line defines the second view controller’s

transparency as 1, which makes it fully visible.

After the animation is complete, a closure presents the second view

controller but without animation so it will use our defined animation.

The entire CustomSegue.swift file should look like this:

import UIKit

import GLKit �// Only needed if you want to convert degrees into

radians for rotation

class CustomSegue: UIStoryboardSegue {

 override func perform() {

 let firstVC = self.source

 let secondVC = self.destination

 firstVC.view.addSubview(secondVC.view)

 �//secondVC.view.transform = CGAffineTransform(translationX:

firstVC.view.bounds.width, y: firstVC.view.bounds.height)

 �//secondVC.view.transform = CGAffineTransform(scaleX: 0.0,

y: 0.0)

 let angle = GLKMathDegreesToRadians(125)

 �secondVC.view.transform = CGAffineTransform(rotationAngle:

CGFloat(angle))

 //secondVC.view.alpha = 0

 UIView.animate(withDuration: 0.8, animations: {

 �//secondVC.view.transform =

CGAffineTransform(translationX: 0.0, y: 0.0)

 �//secondVC.view.transform = CGAffineTransform(scaleX:

1.0, y: 1.0)

 �secondVC.view.transform = CGAffineTransform(rotation

Angle: 0.0)

Chapter 15 Displaying Animation

391

 //secondVC.view.alpha = 1

 }) { (finished) in

 �firstVC.present(secondVC, animated: false,

completion: nil)

 }

 }

}

	 7.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears and displays the Show button.

	 8.	 Click the Show button. The second view controller rotates into

position.

	 9.	 Click the Hide button to return back to the first view controller.

	 10.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

Experiment by commenting out the rotation angle code and uncommenting the

translation code like this:

 �secondVC.view.transform = CGAffineTransform(translationX: firstVC.

view.bounds.width, y: firstVC.view.bounds.height)

 //secondVC.view.transform = CGAffineTransform(scaleX: 0.0, y: 0.0)

 //let angle = GLKMathDegreesToRadians(125)

 �//secondVC.view.transform = CGAffineTransform(rotationAngle:

CGFloat(angle))

 UIView.animate(withDuration: 0.8, animations: {

 �secondVC.view.transform = CGAffineTransform(translationX: 0.0,

y: 0.0)

 //secondVC.view.transform = CGAffineTransform(scaleX: 1.0, y: 1.0)

 //secondVC.view.transform = CGAffineTransform(rotationAngle: 0.0)

 }) { (finished) in

 firstVC.present(secondVC, animated: false, completion: nil)

 }

Chapter 15 Displaying Animation

392

Then repeat except uncommenting out the scaling code and commenting out the

other animation code like this:

 �//secondVC.view.transform = CGAffineTransform(translationX:

firstVC.view.bounds.width, y: firstVC.view.bounds.height)

 secondVC.view.transform = CGAffineTransform(scaleX: 0.0, y: 0.0)

 //let angle = GLKMathDegreesToRadians(125)

 �//secondVC.view.transform = CGAffineTransform(rotationAngle:

CGFloat(angle))

 UIView.animate(withDuration: 0.8, animations: {

 �//secondVC.view.transform = CGAffineTransform(translationX:

0.0, y: 0.0)

 secondVC.view.transform = CGAffineTransform(scaleX: 1.0, y: 1.0)

 //secondVC.view.transform = CGAffineTransform(rotationAngle: 0.0)

 }) { (finished) in

 firstVC.present(secondVC, animated: false, completion: nil)

 }

Finally, uncomment out the transparency code and comment out the other

animation code like this:

 �//secondVC.view.transform = CGAffineTransform(translationX:

firstVC.view.bounds.width, y: firstVC.view.bounds.height)

 //secondVC.view.transform = CGAffineTransform(scaleX: 0.0, y: 0.0)

 //let angle = GLKMathDegreesToRadians(125)

 �//secondVC.view.transform = CGAffineTransform(rotationAngle:

CGFloat(angle))

 secondVC.view.alpha = 0

 UIView.animate(withDuration: 0.8, animations: {

 �//secondVC.view.transform = CGAffineTransform(translationX:

0.0, y: 0.0)

 //secondVC.view.transform = CGAffineTransform(scaleX: 1.0, y: 1.0)

 //secondVC.view.transform = CGAffineTransform(rotationAngle: 0.0)

Chapter 15 Displaying Animation

393

 secondVC.view.alpha = 1

 }) { (finished) in

 firstVC.present(secondVC, animated: false, completion: nil)

 }

�Simple Animation Transition Between
View Controllers
Rather than define your own animation transitions between view controllers, Xcode

offers a Transition Style option that lets you choose how a view controller appears on the

screen. The four different Transition Styles include

•	 Cover Vertical – The view controller slides up from the bottom of the

screen (default).

•	 Flip Horizontal – The current view controller flips from right to left

in 3D as if the new view controller were on back of the previous view

controller.

•	 Cross Dissolve – The current view controller fades out, while the new

view controller fades in.

•	 Partial Curl – The current view controller curls up from the bottom

right corner like turning the page of a book, revealing the new view

controller underneath.

To see how to choose these different animation transitions between view controllers,

follow these steps:

	 1.	 Create a new iOS Single View App project and name it

OpenViewApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a button on the view

controller.

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints. Xcode adds constraints to the button.

Chapter 15 Displaying Animation

394

	 5.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard side by side with the

ViewController.swift file.

	 6.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 7.	 Release the Control key and the left mouse button. A popup

window appears.

	 8.	 Click in the Name text field, type openView, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates an IBAction method.

	 9.	 Modify this openView IBAction method as follows:

@IBAction func openView(_ sender: UIButton) {

 �let vc = self.storyboard?.instantiateViewController

(withIdentifier: "second")

 present(vc!, animated: true, completion: nil)

}

The first line creates a “vc” constant that represents a view

controller in the storyboard that has a StoryID called “second”

(this can be any arbitrary text you wish). Then the second line

displays this view controller. That means we need to add a second

view controller to the storyboard and give it a Storyboard ID of

“second”.

	 10.	 Click the Library icon and drag and drop a View Controller in the

storyboard.

	 11.	 Click the Library icon and drag and drop a button on this second

view controller in the storyboard.

	 12.	 Move the mouse pointer over this button on the second view

controller, hold down the Control key, and Ctrl-drag over the first

view controller.

Chapter 15 Displaying Animation

395

	 13.	 Release the Control key and the left mouse button. A popup menu

appears.

	 14.	 Choose Show.

	 15.	 Click View (under the second View Controller) in the Document

Outline.

	 16.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 17.	 Click the Background popup menu and choose a distinctive color

for this second view controller.

	 18.	 Click the Transition Style popup menu and choose Flip Horizontal

as shown in Figure 15-11.

Chapter 15 Displaying Animation

396

	 19.	 Click the second View Controller Scene in the Document Outline

or click the yellow circle icon at the top of this second view

controller to select this newly added view controller.

	 20.	 Choose View ➤ Inspectors ➤ Show Identity Inspector, or click

the Identity Inspector icon in the upper right corner of the Xcode

window.

	 21.	 Click in the Storyboard ID text field, type second, and press Enter

as shown in Figure 15-12.

Figure 15-11.  The Transition Style popup menu

Chapter 15 Displaying Animation

397

	 22.	 Click the first View Controller Scene in the Document Outline or

click the yellow circle icon at the top of the first view controller to

select the initial view controller (with the white background).

	 23.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 24.	 Click the Transition Style popup menu and choose Flip

Horizontal.

	 25.	 Click the Run button or choose Product ➤ Run. The Simulator

screen displays the user interface.

	 26.	 Click the button. Notice that the second view controller appears to

flip around because of the Flip Horizontal transition style.

	 27.	 Click the button on this second view controller. Notice that the

first view controller appears to flip around because it also has a

Flip Horizontal transition style.

	 28.	 Choose Simulator ➤ Quit Simulator.

By experimenting with different transition styles such as Partial Curl or Cross

Dissolve, you can create different ways to display view controllers on the screen.

Figure 15-12.  The Storyboard ID text field

Chapter 15 Displaying Animation

398

�Summary
Animation can make your user interface visually interesting to look at while also

emphasizing any important parts of the user interface. Animation can involve moving,

resizing, rotating, or changing the transparency of an item. You can define how long

animation lasts and add delays so one animation starts later than another animation.

You can also make animation repeat endlessly and/or play in reverse.

By adding damping and velocity, you can define how fast the animation starts and

how it oscillates back and forth. Oscillation can make animated items appear to bounce

on the screen.

Finally, you can create custom animation for transitions between two view

controllers. Such custom transitions let you create more interesting and unique

transitions from one view controller to another. If you’d rather not create a custom

transition, you can choose different transition styles for your view controllers instead.

Chapter 15 Displaying Animation

399
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_16

CHAPTER 16

Using Machine Learning
Artificial intelligence (AI) has been around since the 1960s. In those early days, computer

scientists dreamed of intelligent computers that could think, but the reality proved far

less breathtaking. The biggest obstacle to AI was that computer scientists had to mimic

intelligence by anticipating all situations. In limited domains like chess, this worked,

but when dealing with large amounts of data, this primitive solution failed because it’s

impossible to anticipate all possible situations that might occur in most cases. That’s why

the latest developments in AI focus less on hand coding all possibilities and focus more

on machine learning.

Machine learning has proven valuable for creating “smarter” programs, especially

when they must deal with previously unknown data. For example, credit card companies

use machine learning to track your spending patterns. With so many customers, it’s

impossible for people to track each customer’s spending patterns so that’s why they rely

on machine learning instead.

Machine learning can analyze your spending patterns, and the moment it detects

something unusual, such as a purchase in another country or a large, out of the ordinary

purchase, the machine learning program flags that as suspicious. Since your spending

patterns may change subtly over time, the machine learning program can adjust and

recognize valid purchases while spotting suspicious ones. In this way, machine learning

adapts to new situations and appears “smarter.”

Machine learning is best used for dealing with data that can’t be anticipated ahead of

time although many programs can adapt machine learning to make the program easier

to use. For example, when you type text to write an e-mail or a note, the virtual keyboard

displays words and phrases it thinks you’re likely to write. By tapping on a word or

phrase, you can type faster without writing out the entire word or phrase.

Machine learning can make apps more responsive and versatile. In this chapter,

you’ll learn how to incorporate machine learning in iOS apps.

400

�Understanding Machine Learning
The main idea behind machine learning is that computer scientists create generic

algorithms that they train using large amounts of data. When the algorithm gets the

problem right, it modifies its own code so it can identify similar types of problems in

the future. When the algorithm gets the problem wrong, it also modifies its own code

to reduce the chance of making the same mistake again. Such training and feedback

creates a program that literally learns, hence the term machine learning. Best of all,

the algorithm trains itself based on data it receives so there’s no need for a human

programmer to modify the algorithm by hand, which would be tedious and inefficient.

Machine learning lets programs deal with situations it has never encountered before.

One common machine learning problem involves image recognition. You can train an

algorithm to recognize a dog or a boat in a picture, but that algorithm must eventually

learn to recognize dogs or boats in pictures it has never seen before.

Most people may be familiar with an early form of machine learning that appeared

in spam filters for e-mail. It’s impossible to identify all possible spam because spammers

can simply modify their spam. As a result, spam filters use machine learning to identify

possible spam. When you confirm that a message is spam, you’re training the spam filter

to recognize similar types of spam in the future. That’s why over time, spam filters tend

to get better simply because they keep getting trained by new data.

Machine learning involves three steps:

•	 Developing and writing algorithms

•	 Training the algorithm with large amounts of data

•	 Using the trained algorithm (called a machine learning model)

Creating algorithms can be difficult and training algorithms can be time-consuming.

In 2018, Apple introduced Create ML, which allows you to create your own machine

learning models using Swift. This involves exposing the Create ML machine learning

model to lots of data to gradually train it to recognize the data you want. Fortunately,

if you don’t have the time to design your own machine learning models, you can take

trained machine learning models and simply use them without writing your own

algorithms or training it with large amounts of data.

Chapter 16 Using Machine Learning

401

Note A pple’s Create ML framework is based on Turi Create, a machine learning
company that Apple acquired in 2016. Turi Create was designed to let you create
machine learning models using the Python programming language. Create ML is
basically Turi Create redesigned for Apple’s Swift programming language. You can
learn more about Create ML from Apple’s documentation (https://developer.
apple.com/documentation/createml).

The advantages of simply using a trained machine learning model is that you can

add artificial intelligence to your iOS apps quickly and easily. The drawback is that you

need to find trained machine learning models that do what you need. In addition, you

cannot increase the trained machine learning model’s intelligence. You’re essentially

taking a fixed machine learning model that won’t improve over time.

Since most people aren’t able to write machine learning algorithms and train it with

large amounts of data, they must rely on machine learning models that others have

created. There are two sources or machine learning models:

•	 Core ML models

•	 Non-Core ML models

When you add a machine learning model to an iOS project, it must be stored in a file

format known as Core ML (which stands for Core Machine Learning). Since Core ML

is a new file format, most machine learning models are stored in different file formats.

Fortunately, Apple has converted some popular machine learning models into the Core

ML format. That means you can use these machine learning models in your iOS apps

right away.

The main purpose for adding machine learning to your iOS apps is so your app can

anticipate the user’s needs. When you type text in many iOS apps, you’ll see a list of

words or phrases the app thinks you want to type. Rather than type the entire word or

phrase yourself, you can just tap on the suggested word or phrase displayed. Over time,

the app will tend to suggest common words and phrases you use most often, so the app

customizes itself to your behavior, making typing text faster and easier for you.

Essentially machine learning lets your app become smarter. The smarter your app is

able to respond to the user, the happier the user will be. Machine learning gives your app

new capabilities without requiring you to exhaustively write instructions yourself.

Chapter 16 Using Machine Learning

https://developer.apple.com/documentation/createml
https://developer.apple.com/documentation/createml

402

What this chapter will focus on is finding Core ML models, adding them to iOS

projects, and using them in your iOS app.

�Finding a Core ML Model
The simplest way to find a Core ML model to use is to visit Apple’s Developer web site on

machine learning at https://developer.apple.com/machine-learning. Apple provides

a growing library of tested Core ML models that you can add to an iOS project. While this

list may be relatively small, it will grow over time.

Besides Apple’s site, you may also be able to find Core ML models on third-party

sites where people have created or converted other machine learning model formats into

Core ML. For the truly adventurous, you can find Core ML conversion tools on Apple’s

Developer web site. By using these Core ML conversion tools, you can search for other

machine learning models stored in different file formats and convert them into the

Core ML format. This process of converting machine learning models into the Core ML

format involves using the Python programming language and is beyond the scope of this

chapter.

When evaluating different Core ML models to use, you need to look at what the

machine learning model does and how large its file may be as shown in Figure 16-1.

The Core ML model described in Figure 16-1 tells you that it’s an image recognition

model that’s 5 MB in size. The size of Core ML models can vary dramatically so you need

to weigh the benefits of each model with its size. Adding 5 MB to the size of your iOS app

may be reasonable, but adding 553.5 MB may not. There’s often a trade-off between large

Figure 16-1.  Core ML models briefly describe what the model does and how large
its file is

Chapter 16 Using Machine Learning

https://developer.apple.com/machine-learning

403

file size and greater accuracy, but sometimes smaller models can outperform larger ones

so you may need to experiment with different models until you find the right one for

your app that balances accuracy and file size.

�Image Recognition
At the time of this writing, most of the Core ML models available on Apple’s machine

learning site focuses on image recognition. This can work in two ways:

•	 Your app can load an image stored in the Photos app.

•	 Your app can view an item through the camera.

First, we’ll start simple and add an image to an Xcode project. This will only allow us

to recognize that single image hard-coded into the app, but it will let us focus on getting

the Core ML model working within an app. Once we know the Core ML model works, we

can focus on the non-machine learning functions to retrieve an image from the Photos

app or from the iPhone/iPad camera.

The first step is to download a Core ML model to your computer. Visit https://

developer.apple.com/machine-learning and download the MobileNet and

SqueezeNet models. Both models focus on image recognition and both are fairly small

in size. By experimenting with two different Core ML models, you can see how accurate

both of them might be and how using any Core ML model works in similar ways.

The second step is to visit any search engine and look for images of any object such

as a car, dog, computer, or bird. The exact image doesn’t matter but choose an image that

has a blank background such as all white. By choosing an image that’s isolated and not

cluttered with other items, you’ll improve the Core ML model’s chance of recognizing it

correctly.

Obviously in real apps, you can’t always choose pictures that are easiest for the

Core ML model to identify, but for our purposes, we just want to get the Core ML model

working to identify items in a picture. Once you have downloaded the Core ML models

(SqueezeNet and MobileNet) and a single image of any object, you’re ready to create the

Xcode project to use machine learning.

Chapter 16 Using Machine Learning

https://developer.apple.com/machine-learning
https://developer.apple.com/machine-learning

404

To see how to use a Core ML file, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

CoreMLImageApp.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Under the import UIKit line, add the following:

import CoreML

import Vision

The “import CoreML” line simply lets your project recognize and

use the Core ML model added to your project. The “import Vision”

line lets your project use the Vision framework for recognizing items

in an image.

	 4.	 Drag and drop the MobileNet Core ML model from a Finder

window to the Navigator pane of your Xcode project as shown in

Figure 16-2. When a dialog appears, click the Finish button.

Figure 16-2.  Drag and drop the Core ML model into Xcode

Chapter 16 Using Machine Learning

405

	 5.	 Drag and drop an image into the Navigator pane, and when a

dialog appears, click the Finish button. Make sure this image file

has a descriptive name such as “cat.jpg” or something similar.

	 6.	 Click the image file you added to the Navigator pane. Xcode

displays that image.

	 7.	 Choose View ➤ Inspectors ➤ Show the File Inspector, or click the

File Inspector icon in the upper right corner of the Xcode window.

	 8.	 Look under the Target Membership category and make sure

the check box is selected. If you named your Xcode project

CoreMLImageApp, then make sure the CoreMLImageApp check

box is selected under the Target Membership category.

	 9.	 Click the MobileNet.mlmodel file in the Project navigator. The

middle Xcode pane displays information about the machine

learning model such as its authors and how it works. More

importantly, the Model Evaluation Parameters describe the input

the model expects and the data it outputs.

In the case of the MobileNet.mlmodel file, it expects an input of

an image. Once it receives an image, it outputs a dictionary (a

string and a double) that displays the probability that it accurately

identified the image. It also outputs a string that identifies the

image.

	 10.	 Choose View ➤ Inspectors ➤ Show the File Inspector, or click the

File Inspector icon in the upper right corner of the Xcode window.

	 11.	 Look under the Target Membership category and make sure

the check box is selected. If you named your Xcode project

CoreMLImageApp, then make sure the CoreMLImageApp check

box is selected under the Target Membership category as shown

in Figure 16-3.

Chapter 16 Using Machine Learning

406

	 12.	 Click the Main.storyboard file in the Navigator pane.

	 13.	 Click the Library icon and drag and drop a label and image view.

Resize the label and image view so it looks similar to Figure 16-4.

Figure 16-3.  Viewing the details of the MobileNet model

Chapter 16 Using Machine Learning

407

	 14.	 Click the image view and then choose View ➤ Utilities ➤ Show

Attributes Inspector, or click the Attributes Inspector icon in the

upper right corner of the Xcode window.

	 15.	 Click the Image text field and choose the file name of your image

such as “cat.jpg”. This will make the image view display the image

you stored in your Xcode project.

	 16.	 Click the Content Mode popup menu and choose Aspect Fit. This

will make the image appear correctly proportioned in the image

view. At this point, you should see your chosen image appear in

the image view.

Figure 16-4.  Designing the user interface

Chapter 16 Using Machine Learning

408

	 17.	 Click the label and make sure the Attributes Inspector is still

visible. (If not, click View ➤ Utilities ➤ Show Attributes Inspector.)

	 18.	 Click in the Lines text field, type 0, and press Enter. Defining 0

lines makes the label display as many lines as needed depending

on the text you store in that label.

	 19.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard and ViewController.

swift files side by side.

	 20.	 Move the mouse pointer over the image view, hold down the

Control key, and Ctrl-drag from the image view to under the class

ViewController line in the ViewController.swift file.

	 21.	 Release the Control key and the left mouse button. A popup

window appears.

	 22.	 Click in the Name text field, type imageView, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var imageView: UIImageView!

	 23.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag from the label to under the class ViewController

line in the ViewController.swift file.

	 24.	 Release the Control key and the left mouse button. A popup

window appears.

	 25.	 Click in the Name text field, type labelDescription, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var labelDescription: UILabel!

	 26.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

Chapter 16 Using Machine Learning

409

At this point, we’ve created the user interface. Now it’s time to write Swift code.

The machine learning model needs an image as input, so we need to identify the image

file you added to your Xcode project. This involves two steps. First, you need to identify

the file name, file extension of the image, and path of that image. Second, you need to

store this information as a URL to give to the Core ML model.

To make the ModelNet machine learning work, follow these steps:

	 1.	 Click the ViewController.swift file in the Navigator pane.

	 2.	 Add the following line in the viewDidLoad method:

let imagePath = Bundle.main.path(forResource: "Cat", ofType: "jpg")

In the preceding code, the constant name is “imagePath” but

you can choose any name you wish. The file name is “Cat” but

you need to replace this with the name of your image file. The

file extension is “jpg” and you’ll need to replace it with the file

extension of your image file as well. The preceding code creates an

optional variable because it’s possible that the file can’t be found.

	 3.	 Add the following line under the previously added line in the

viewDidLoad method:

let imageURL = NSURL.fileURL(withPath: imagePath!)

In the preceding code, the constant name is “imageURL” but you

can choose any name you wish. The image path is identified as

“imagePath”, which must be identical to the constant you created

using the Bundle.main.path command. Notice that you must

explicitly unwrap the “imagePath” optional variable using the

exclamation point.

Now that we’ve stored the image file, extension, and path in a

constant (“imageURL”), it’s time to work with the Core ML model.

First, create a constant to represent the Core ML model added to

your Xcode project, such as MobileNet.mlmodel.

Chapter 16 Using Machine Learning

410

	 4.	 Add the following line under the previously added line in the

viewDidLoad method:

let modelFile = MobileNet()

The “modelFile” constant can actually be any name you wish.

MobileNet() identifies the MobileNet.mlmodel file added in

your Xcode project. If you use a different Core ML model such as

SqueezeNet.mlmodel, then you would replace “MobileNet” with

“SqueezeNet”.

Next, we need to tell your app to use the chosen Core ML

model (identified by the “modelFile” constant) with the Vision

framework. This means creating another constant with an

arbitrary name (such as “model”).

	 5.	 Add the following line under the previously added line in the

viewDidLoad method:

let model = try! VNCoreMLModel(for: modelFile.model)

Now the next step is to let the Core ML model examine the image.

We already defined the image name, extension, and path in the

“imageURL” constant, so we can use this to define an image

request.

	 6.	 Add the following line under the previously added line in the

viewDidLoad method:

let handler = VNImageRequestHandler(url: imageURL)

After requesting an image to examine, the next step is to request

that your app actually use the Core ML model stored in the

“model” constant. The Core ML model needs to examine the

image and compare it to its trained data multiple times to

maximize the chances of identifying it correctly. That means you

need to request that the Core ML model run and provide it with

a completion handler that defines what the Core ML model does

when it identifies the image.

Chapter 16 Using Machine Learning

411

	 7.	 Add the following two lines under the previously added line in the

viewDidLoad method:

let request = VNCoreMLRequest(model: model, completionHandler:

findResults)

try! handler.perform([request])

The last step is to write the function for the completion handler,

which is called “findResults”.

	 8.	 Create a separate function in the ViewController.swift file as follows:

func findResults(request: VNRequest, error: Error?) {

}

This findResults function runs when the Core ML model examines

an image. The first step for this findResults function is to make

sure it can examine the image. If not, it needs to prevent the rest

of its code from running. To check if the Core ML model can

successfully examine an image, we can use a guard statement.

	 9.	 Add the following in the findResults function:

guard let results = request.results as?

[VNClassificationObservation] else {

 fatalError("Unable to get results")

}

Assuming that the Core ML model can examine the image, we

need to keep track of its guesses with two variables that can be any

arbitrary name.

	 10.	 Add the following in the findResults function:

var bestGuess = ""

var bestConfidence: VNConfidence = 0

The “bestGuess” variable will hold the Core ML model’s current

prediction of what it thinks the item in an image might be.

The “bestConfidence” variable will hold the confidence level.

Note that the “bestConfidence” variable must be defined as a

VNConfidence data type, which holds a Float value.

Chapter 16 Using Machine Learning

412

Finally, we need a loop to exhaustively examine the image to

determine the Core ML model’s best guess of what that object

might be. This loop assigns a confidence level and an identifier

to the “bestConfidence” and “bestGuess” variables, respectively.

Each time it comes across a prediction with a higher confidence

level, it stores it in the “bestGuess” variable.

	 11.	 Add the following in the findResults function:

for classification in results {

 if (classification.confidence > bestConfidence) {

 bestConfidence = classification.confidence

 bestGuess = classification.identifier

 }

}

Finally after the loop has exhaustively searched through all

possible predictions for what the item in the image might be, the

loop stops and the “bestGuess” variable contains the guess and

the “bestConfidence” variable contains that confidence level. Now

we need one last line of code to display this information in the

label on the user interface.

	 12.	 Add the following in the findResults function:

labelDescription.text = "Image is: \(bestGuess) with

confidence \(bestConfidence)) out of 1"

The entire ViewController.swift file should look like this:

import UIKit

import CoreML

import Vision

class ViewController: UIViewController {

 @IBOutlet var imageView: UIImageView!

 @IBOutlet var labelDescription: UILabel!

 override func viewDidLoad() {

 super.viewDidLoad()

Chapter 16 Using Machine Learning

413

 �let imagePath = Bundle.main.path(forResource: "Cat",

ofType: "jpg")

 let imageURL = NSURL.fileURL(withPath: imagePath!)

 let modelFile = MobileNet()

 let model = try! VNCoreMLModel(for: modelFile.model)

 let handler = VNImageRequestHandler(url: imageURL)

 �let request = VNCoreMLRequest(model: model,

completionHandler: findResults)

 try! handler.perform([request])

 }

 func findResults(request: VNRequest, error: Error?) {

 �guard let results = request.results as?

[VNClassificationObservation] else {

 fatalError("Unable to get results")

 }

 var bestGuess = ""

 var bestConfidence: VNConfidence = 0

 for classification in results {

 if (classification.confidence > bestConfidence) {

 bestConfidence = classification.confidence

 bestGuess = classification.identifier

 }

 }

 �labelDescription.text = "Image is: \(bestGuess) with

confidence \(bestConfidence)) out of 1"

 }

}

Chapter 16 Using Machine Learning

414

	 13.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears, displaying the image you added to the image view

along with the Core ML model’s guess and confidence level of the

image as shown in Figure 16-5.

	 14.	 Choose Simulator ➤ Quit Simulator to return to Xcode.

If you modify your project by adding a different Core ML model, you’ll notice that

each Core ML model identifies the same object in slightly different ways with different

confidence levels. You can also try modifying your project by adding different image

files containing cars, trees, horses, or airplanes to see how accurately it identifies the

Figure 16-5.  Recognizing an image using a Core ML model

Chapter 16 Using Machine Learning

415

displayed item. Machine learning models aren’t perfect, but you can see that we’ve

created an app that can identify items with very little coding. Instead, we’ve let a trained

machine learning model do all the hard work of identifying items in an image.

�Identifying Objects from the Camera
The first app we built in this chapter simply examined a single image file. If we wanted to

examine a different image, we’d have to add that new image to the Xcode project, modify

the code slightly to reflect the different image file name, and then run the app all over

again.

A far more versatile solution is to simply use the built-in camera on an iPhone or

iPad to aim and point at an object. Then have the Core ML model try to identify what

that object might be. To do this, you’ll need to physically connect an iPhone or iPad to

your Macintosh while running Xcode since you cannot test the camera on the Simulator.

To see how to use a Core ML file, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

CoreMLCameraApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a view and a label. Resize

the view and label so it looks similar to Figure 16-6.

Chapter 16 Using Machine Learning

416

	 4.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to the view and label.

	 5.	 Click the label to select it.

	 6.	 Choose View ➤ Inspectors ➤ Show Attributes Inspector, or click

the Attributes Inspector icon in the upper right corner of the

Xcode window.

	 7.	 Click the Center icon to center text inside the label.

Figure 16-6.  Designing the user interface for the CoreMLCameraApp project

Chapter 16 Using Machine Learning

417

	 8.	 Click the Background popup menu and choose light color such as

white or light yellow. This will make the label easier to see on an

actual iOS screen.

	 9.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode displays the Main.storyboard and ViewController.

swift files side by side.

	 10.	 Move the mouse pointer over the view, hold down the Control

key, and Ctrl-drag from the view to under the class ViewController

line in the ViewController.swift file.

	 11.	 Release the Control key and the left mouse button. A popup

window appears.

	 12.	 Click in the Name text field, type videoFeed, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var videoFeed: UIView!

	 13.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag from the label to under the class ViewController

line in the ViewController.swift file.

	 14.	 Release the Control key and the left mouse button. A popup

window appears.

	 15.	 Click in the Name text field, type resultLabel, and click the

Connect button. Xcode creates the following IBOutlet:

@IBOutlet var resultLabel: UILabel!

	 16.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 17.	 Click the ViewController.swift file in the Navigator pane.

Chapter 16 Using Machine Learning

418

	 18.	 Under the import UIKit line, add the following:

import AVFoundation

import CoreML

import Vision

The AVFoundation framework lets us access the camera, while the

CoreML framework lets us access a machine learning model and

the Vision framework lets us recognize images.

	 19.	 Underneath the IBOutlets, add the following three variables to

represent the camera output, the capture session, and the video

preview layer. The camera output is what the iPhone/iPad camera

receives. The capture session coordinates the flow of data from the

camera. The video preview layer displays the video the iPhone/

iPad camera captures:

var cameraOutput : AVCapturePhotoOutput!

var previewLayer : AVCaptureVideoPreviewLayer!

var captureSession : AVCaptureSession!

Once we’ve created these IBOutlets and variables, we need

to write a function that store and display data captured

through the camera. Inside this function we need to create an

AVCaptureSession, which can capture different types of data such

as audio or video. Then we need to capture photographic images

through the camera.

	 20.	 Add the following function in the ViewController.swift file:

func useCamera() {

 captureSession = AVCaptureSession()

 captureSession.sessionPreset = AVCaptureSession.Preset.photo

}

Now we need to store the captured video from the camera in the

cameraOutput variable.

Chapter 16 Using Machine Learning

419

	 21.	 Add the following in the useCamera function:

cameraOutput = AVCapturePhotoOutput()

Finally, we need to retrieve video and determine if it’s successful

or not. That involves creating a constant called “device” to capture

video. Then we need to use an if statement to determine if the

camera is successfully capturing video. This involves defining a

“device” constant and then using an if statement.

	 22.	 Add the following to the useCamera function:

let device = AVCaptureDevice.default(for: AVMediaType.video)

if let input = try? AVCaptureDeviceInput(device: device!) {

} else {

 print ("No video feed available")

}

If there is no video feed, then the else portion runs and prints “No

video feed available”. If there is video, then we need to check if

the video can be successfully displayed in the UIView through its

IBOutlet named videoFeed.

Once we know we can retrieve video, two more if statements

check if it’s possible to get input and output from the camera.

	 23.	 Modify the if let statement as follows:

 if let input = try? AVCaptureDeviceInput(device: device!) {

 if (captureSession.canAddInput(input)) {

 captureSession.addInput(input)

 if (captureSession.canAddOutput(cameraOutput)) {

 captureSession.addOutput(cameraOutput)

 }

 } else {

 print ("No video feed available")

 }

Chapter 16 Using Machine Learning

420

Finally, we need to display the captured video onto the UIView on

the user interface. To do this, we need to define the previewLayer

to the captureSession (the video feed from the camera) and define

how that video appears inside the UIView such as Aspect Fill.

	 24.	 Modify the if let statement as follows:

 if let input = try? AVCaptureDeviceInput(device: device!) {

 if (captureSession.canAddInput(input)) {

 captureSession.addInput(input)

 if (captureSession.canAddOutput(cameraOutput)) {

 captureSession.addOutput(cameraOutput)

 }

 �previewLayer = AVCaptureVideoPreviewLayer(session:

captureSession)

 �previewLayer.videoGravity = AVLayerVideoGravity.

resizeAspectFill

 } else {

 print ("No video feed available")

 }

 }

The last step is to actually display the video inside the UIView,

which is defined by the IBOutlet called videoFeed. First, we

need to define the frame of the preview layer to match the size

of the UIView on the user interface. Next, we need to add that

previewLayer to the UIView layer. Finally, we need to start

capturing the video.

	 25.	 Modify the useCamera function so the entire function looks like

this:

func useCamera() {

 captureSession = AVCaptureSession()

 captureSession.sessionPreset = AVCaptureSession.Preset.photo

 cameraOutput = AVCapturePhotoOutput()

Chapter 16 Using Machine Learning

421

 let device = AVCaptureDevice.default(for: AVMediaType.video)

 if let input = try? AVCaptureDeviceInput(device: device!) {

 if (captureSession.canAddInput(input)) {

 captureSession.addInput(input)

 if (captureSession.canAddOutput(cameraOutput)) {

 captureSession.addOutput(cameraOutput)

 }

 �previewLayer = AVCaptureVideoPreviewLayer(session:

captureSession)

 �previewLayer.videoGravity = AVLayerVideoGravity.

resizeAspectFill

 previewLayer.frame = videoFeed.bounds

 videoFeed.layer.addSublayer(previewLayer)

 captureSession.startRunning()

 } else {

 print ("Could not get any input")

 }

 } else {

 print ("No video feed available")

 }

}

	 26.	 Modify the viewDidLoad method to call the “useCamera” function

like this:

override func viewDidLoad() {

 super.viewDidLoad()

 useCamera()

}

The entire ViewController.swift file should look like this:

import UIKit

import AVFoundation

import CoreML

import Vision

Chapter 16 Using Machine Learning

422

class ViewController: UIViewController {

 @IBOutlet var videoFeed: UIView!

 @IBOutlet var resultLabel: UILabel!

 var cameraOutput : AVCapturePhotoOutput!

 var previewLayer : AVCaptureVideoPreviewLayer!

 var captureSession : AVCaptureSession!

 override func viewDidLoad() {

 super.viewDidLoad()

 useCamera()

 }

 func useCamera() {

 captureSession = AVCaptureSession()

 captureSession.sessionPreset = AVCaptureSession.Preset.photo

 cameraOutput = AVCapturePhotoOutput()

 let device = AVCaptureDevice.default(for: AVMediaType.video)

 if let input = try? AVCaptureDeviceInput(device: device!) {

 if (captureSession.canAddInput(input)) {

 captureSession.addInput(input)

 if (captureSession.canAddOutput(cameraOutput)) {

 captureSession.addOutput(cameraOutput)

 }

 �previewLayer = AVCaptureVideoPreviewLayer(session:

captureSession)

 �previewLayer.videoGravity = AVLayerVideoGravity.

resizeAspectFill

 previewLayer.frame = videoFeed.bounds

 videoFeed.layer.addSublayer(previewLayer)

 captureSession.startRunning()

 } else {

 print ("Could not get any input")

 }

 } else {

Chapter 16 Using Machine Learning

423

 print ("No video feed available")

 }

 }

}

	 27.	 Connect your iOS device to your Macintosh through a USB cable.

	 28.	 Click the Active Scheme icon at the top of the Xcode window to

display a menu. At the top of this menu, choose your iOS device

under the Device category as shown in Figure 16-7.

Figure 16-7.  Choosing an iOS device from the Active Scheme icon

Chapter 16 Using Machine Learning

424

Once you’ve defined an actual iOS device to run your Xcode

CoreMLCameraApp project, the last step is to give your app

permission to access the camera.

	 29.	 Click the Info.plist file in the Navigator pane.

	 30.	 Move the mouse pointer over the bottom row until a + and – icon

appears.

	 31.	 Click the + icon. Xcode adds a new row.

	 32.	 Click in the Key column in the newly added row so a popup menu

appears and choose Privacy – Camera Usage Description as

shown in Figure 16-8.

Click in the Value column and type a message such as “App needs to access camera”.

The exact text does not matter as it will only appear the first time your app runs on an

iOS device.

�Analyzing an Image
At this point the code in your project simply allows the app to retrieve video from a

connected iOS device’s camera and display it on the user interface. The next step is to

actually capture and analyze an individual image from that video feed so the Core ML

model can recognize the object viewed by the camera.

Figure 16-8.  Defining privacy settings to allow use of the camera

Chapter 16 Using Machine Learning

425

We’ll need to create a function that retrieves an image from the video feed and

another function to analyze that image using a Core ML model. First, we need to capture

an image from the video feed with a function called recognizeImage() and call that

function at the end of the useCamera method.

	 1.	 Click the ViewController.swift file in the Navigator pane.

	 2.	 Edit the class ViewController line like this:

class ViewController: UIViewController, AVCapturePhotoCaptureDelegate {

The AVCapturePhotoCaptureDelegate allows capturing of images

through the camera.

	 3.	 Edit the last few lines of the useCamera function like this:

} else {

 print ("No video feed available")

}

recognizeImage()

}

	 4.	 Add a recognizeImage function underneath the useCamera

function like this:

@objc func recognizeImage() {

}

Note T he @obj keyword allows Swift and Objective-C code to work together.
In this case, this allows Swift code to work with Objective-C code that’s part of
Apple’s framework for creating apps.

The first step is to create an object that allows the capture of an

image, which is an AVCapturePhotoSettings object. Then we need

to capture the actual image and define its format. Finally, we need

to capture an image.

Chapter 16 Using Machine Learning

426

	 5.	 Add the following to the recognizeImage function:

let settings = AVCapturePhotoSettings()

settings.previewPhotoFormat = settings.embeddedThumbnailPhotoFormat

cameraOutput.capturePhoto(with: settings, delegate: self)

After the recognizeImage() function retrieves an image from the

video feed, we need another function to convert this image into a

UIImage.

	 6.	 Add the following function to the ViewController.swift file:

�func photoOutput(_ output: AVCapturePhotoOutput,

didFinishProcessingPhoto photo: AVCapturePhoto, error: Error?) {

 if let error = error {

 print ("Error code: \(error.localizedDescription)")

 }

 �if let imageData = photo.fileDataRepresentation(), let image =

UIImage(data: imageData) {

 predictItem(image: image)

 }

}

The photoOutput function stores the captured image as a UIImage

and also calls a function called predictItem, which we’ll need to

write later. This predictItem function will need to use a Core ML

model to analyze the image captured from the video feed.

Since the Core ML model needs to know where to find that image,

we’ll first need to write a function that returns a URL.

	 7.	 Add the following function in the ViewController.swift file:

func getDocumentsDirectory() -> URL {

 �let paths = FileManager.default.urls(for: .documentDirectory,

in: .userDomainMask)

 let documentsDirectory = paths[0]

 return documentsDirectory

}

Chapter 16 Using Machine Learning

427

	 8.	 Drag and drop the SqueezeNet Core ML file into the Navigator

pane, and when a dialog appears, click the Finish button.

	 9.	 Add the following predictItem function:

func predictItem(image: UIImage) {

 if let data = image.pngData(){

 �let fileName = getDocumentsDirectory().

appendingPathComponent("image.png")

 try? data.write(to: fileName)

 let modelFile = SqueezeNet()

 let model = try! VNCoreMLModel(for: modelFile.model)

 �let request = VNCoreMLRequest(model: model,

completionHandler: finalGuess)

 let handler = VNImageRequestHandler(url: fileName)

 try! handler.perform([request])

 }

}

This code uses the SqueezeNet Core ML model, but you can

substitute the name of a different Core ML model if you wish. By

experimenting with different Core ML models, you can see how

accurate (or poorly) different Core ML models are at recognizing

and identifying items in a picture.

The predictItem function calls another function called finalGuess,

which runs after the Core ML model analyzes the image. The

finalGuess function runs each time the Core ML model guesses

what an item is in an image. Each time the Core ML model makes

a guess, it gives a confidence level between 0 and 1 where 1 is

highly confident.

Chapter 16 Using Machine Learning

428

	 10.	 Add the finalGuess function in the ViewController.swift file as

follows:

func finalGuess(request: VNRequest, error: Error?) {

 �guard let results = request.results as?

[VNClassificationObservation] else {

 fatalError("Unable to get a prediction")

 }

 var bestGuess = ""

 var confidence: VNConfidence = 0

 for classification in results {

 if classification.confidence > confidence {

 confidence = classification.confidence

 bestGuess = classification.identifier

 }

 }

 resultLabel.text = bestGuess + "\n"

 �Timer.scheduledTimer(timeInterval: 5.0, target: self,

selector: #selector(self.recognizeImage), userInfo: nil,

repeats: false)

}

The finalGuess function simply analyzes each prediction by the

Core ML model and checks its confidence level. If the Core ML

model is more confident that it’s found a better match, it uses

that prediction instead. Eventually after the Core ML analyzes

all possible items it can recognize, the one item with the highest

confidence level will be left and that will be the answer displayed

on the label on the user interface.

The entire ViewController.swift file should look like this:

import UIKit

import AVFoundation

import CoreML

import Vision

Chapter 16 Using Machine Learning

429

class ViewController: UIViewController, AVCapturePhotoCaptureDelegate {

 @IBOutlet var videoFeed: UIView!

 @IBOutlet var resultLabel: UILabel!

 var cameraOutput : AVCapturePhotoOutput!

 var previewLayer : AVCaptureVideoPreviewLayer!

 var captureSession : AVCaptureSession!

 override func viewDidLoad() {

 super.viewDidLoad()

 useCamera()

 }

 func useCamera() {

 captureSession = AVCaptureSession()

 captureSession.sessionPreset = AVCaptureSession.Preset.photo

 cameraOutput = AVCapturePhotoOutput()

 let device = AVCaptureDevice.default(for: AVMediaType.video)

 if let input = try? AVCaptureDeviceInput(device: device!) {

 if (captureSession.canAddInput(input)) {

 captureSession.addInput(input)

 if (captureSession.canAddOutput(cameraOutput)) {

 captureSession.addOutput(cameraOutput)

 }

 �previewLayer = AVCaptureVideoPreviewLayer(session:

captureSession)

 �previewLayer.videoGravity = AVLayerVideoGravity.

resizeAspectFill

 previewLayer.frame = videoFeed.bounds

 videoFeed.layer.addSublayer(previewLayer)

 captureSession.startRunning()

 } else {

 print ("Could not get any input")

 }

Chapter 16 Using Machine Learning

430

 } else {

 print ("No video feed available")

 }

 recognizeImage()

 }

 @objc func recognizeImage() {

 let settings = AVCapturePhotoSettings()

 �settings.previewPhotoFormat = settings.

embeddedThumbnailPhotoFormat

 cameraOutput.capturePhoto(with: settings, delegate: self)

 }

 �func photoOutput(_ output: AVCapturePhotoOutput,

didFinishProcessingPhoto photo: AVCapturePhoto, error: Error?) {

 if let error = error {

 print ("Error code: \(error.localizedDescription)")

 }

 �if let imageData = photo.fileDataRepresentation(), let

image = UIImage(data: imageData) {

 predictItem(image: image)

 }

 }

 func getDocumentsDirectory() -> URL {

 �let paths = FileManager.default.urls(for:

.documentDirectory, in: .userDomainMask)

 let documentsDirectory = paths[0]

 return documentsDirectory

 }

 func predictItem(image: UIImage) {

 if let data = image.pngData() {

 �let fileName = getDocumentsDirectory().

appendingPathComponent("image.png")

 try? data.write(to: fileName)

Chapter 16 Using Machine Learning

431

 let modelFile = SqueezeNet()

 let model = try! VNCoreMLModel(for: modelFile.model)

 �let request = VNCoreMLRequest(model: model,

completionHandler: finalGuess)

 let handler = VNImageRequestHandler(url: fileName)

 try! handler.perform([request])

 }

 }

 func finalGuess(request: VNRequest, error: Error?) {

 �guard let results = request.results as?

[VNClassificationObservation] else {

 fatalError("Unable to get a prediction")

 }

 var bestGuess = ""

 var confidence: VNConfidence = 0

 for classification in results {

 if classification.confidence > confidence {

 confidence = classification.confidence

 bestGuess = classification.identifier

 }

 }

 resultLabel.text = bestGuess + "\n"

 �Timer.scheduledTimer(timeInterval: 5.0, target: self,

selector: #selector(self.recognizeImage), userInfo: nil,

repeats: false)

 }

}

	 11.	 Make sure you have an iOS device connected to your Macintosh

and click the Run button, or choose Product ➤ Run.

	 12.	 Point your camera at an item to see what the Core ML model

thinks that item might be as shown in Figure 16-9. (Don’t be

shocked if the accuracy of most Core ML models is surprisingly

low.)

Chapter 16 Using Machine Learning

432

	 13.	 Click the Stop button in Xcode to stop the app from running.

�Summary
As you can see, Core ML models can be impressive in giving your app the ability

to recognize items in images, but they still have limitations in failing to recognize

everything with perfect accuracy. Not all Core ML models are equal in accuracy or size

so you may need to experiment with different Core ML models until you find the one

that works best with your app.

The main idea behind Core ML is that you can add the ability to deal with unknown

data by simply using a trained machine learning model. Apple will continue adding new

Core ML models that will likely offer different features beyond just image recognition.

Over time, you’ll be able to add these trained machine learning models to your apps and

give your app artificial intelligence with little effort.

Figure 16-9.  Identifying an item through the camera of an iPhone

Chapter 16 Using Machine Learning

433
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_17

CHAPTER 17

Using Facial and Text
Recognition
In the previous chapter, you learned about Core ML, which lets you use machine

learning models in your apps. However, iOS also offers another form of artificial

intelligence that doesn’t require finding and adding a trained machine learning model to

your app. Instead, you can simply use the Vision framework that can recognize objects in

pictures such as faces or text.

At the simplest level, facial recognition can identify the number of faces in a picture

and also draw rectangles in an image to show exactly all the faces the app recognized. On

a more advanced level, facial recognition can also identify eyes, noses, and mouths and

other parts of a face.

Beyond recognizing faces in a picture, the Vision framework can also recognize

and identify text in a picture by displaying a rectangle around text. Just remember that

text recognition works best with text that’s easy to see such as black text against a white

background (or white text against a dark background). Text that appears too similar to

the background may get overlooked.

Although facial recognition and text recognition may not be perfect, it can be

accurate enough to give your app extra features that require you to write little additional

code on your own.

�Recognizing Faces in Pictures
To use facial recognition, you must import the Vision framework. In this app we’ll be

analyzing pictures stored in the Photos app so you also need to import the Photos

framework.

434

To see how to use facial recognition, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

FacialRecognitionApp.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Under the import UIKit line, add the following:

import Vision

import Photos

Since this app will need to pick pictures stored in the

Photos app, we’ll need to import the Photos framework

and make the ViewController.swift file adopt the

UIImagePickerControllerDelegate along with the

UINavigationControllerDelegate.

	 4.	 Modify the class ViewController line like this:

class ViewController: UIViewController, UIImagePickerController

Delegate, UINavigationControllerDelegate {

	 5.	 Click the Main.storyboard file in the Navigator pane.

	 6.	 Click the Library icon and drag and drop a button, image view,

and label.

	 7.	 Double-click the button, type Get Image, and press Enter.

	 8.	 Click the label and choose View ➤ Inspectors ➤ Show Attributes

Inspector, or click the Attributes Inspector icon in the upper right

corner of the Xcode window.

	 9.	 Click the Center icon in the Alignment group to center text in the

label.

	 10.	 Resize the label and image view so the user interface looks similar

to Figure 17-1.

Chapter 17 Using Facial and Text Recognition

435

	 11.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints in the bottom half of the submenu. Xcode adds

constraints to the user interface items.

	 12.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

	 13.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

Figure 17-1.  A button, label, and image view define the user interface

Chapter 17 Using Facial and Text Recognition

436

	 14.	 Release the Control key and the left mouse button. A popup

window appears.

	 15.	 Click in the Name text field, type messageLabel, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var messageLabel: UILabel!

	 16.	 Move the mouse pointer over the image view, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 17.	 Release the Control key and the left mouse button. A popup

window appears.

	 18.	 Click in the Name text field, type pictureChosen, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var pictureChosen: UIImageView!

	 19.	 Move the mouse pointer over the button, hold down the

Control key, and Ctrl-drag above the last curly bracket in the

ViewController.swift file.

	 20.	 Release the Control key and the left mouse button. A popup

window appears.

	 21.	 Click in the Name text field, type getImage, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a getImage IBAction method.

	 22.	 Edit this getImage IBAction method as follows:

@IBAction func getImage(_ sender: UIButton) {

 getPhoto()

}

The getImage IBAction method needs to call a function called

getPhoto, which will let the user view and retrieve an image stored

in the Photos app.

Chapter 17 Using Facial and Text Recognition

437

	 23.	 Add the following function in the ViewController.swift file:

func getPhoto() {

 let picker = UIImagePickerController()

 picker.delegate = self

 picker.sourceType = .savedPhotosAlbum

 present(picker, animated: true, completion: nil)

}

Note  For the picker.sourceType, you can choose either .savedPhotosAlbum or
.photoLibrary.

Once the user selects an image, the next step is to display that image

in the UIView on the user interface and analyze that image to look

for faces. To do this, we need to create another function called

imagePickerController that runs after the user picks an image from

the Photos album.

	 24.	 Add the following function in the ViewController.swift file:

�func imagePickerController(_ picker: UIImagePickerController,

didFinishPickingMediaWithInfo info: [UIImagePickerController.

InfoKey : Any]) {

 �if let gotImage = info[UIImagePickerController.InfoKey.

originalImage] as? UIImage {

 picker.dismiss(animated: true, completion: nil)

 pictureChosen.image = gotImage

 analyzeImage(image: gotImage)

 }

}

This function first dismisses the image picker. Then it verifies that

a picture has been chosen. Once it has verified that the user chose

a picture, it displays that image in the UIView connected to the

IBOutlet named pictureChosen. Finally it calls another function to

analyze the image, called analyzeImage.

Chapter 17 Using Facial and Text Recognition

438

	 25.	 Add the following function in the ViewController.swift file:

func analyzeImage(image: UIImage) {

 �let handler = VNImageRequestHandler(cgImage: image.cgImage!,

options: [:])

 messageLabel.text = "Analyzing picture..."

 �let request = VNDetectFaceRectanglesRequest(completionHandler:

handleFaceRecognition)

 try! handler.perform([request])

}

This function uses VNDetectFaceRectanglesRequest in the Vision

framework to detect faces in a picture. After it analyzes a picture, it

runs another function called handleFaceRecognition.

This handleFaceRecognition function simply displays the number

of faces in the UILabel on the user interface. Keep in mind that the

facial recognition feature may not always be accurate for images

where faces may be too small or may appear to blend in with the

background.

	 26.	 Add the following to the ViewController.swift file:

func handleFaceRecognition(request: VNRequest, error: Error?) {

 �guard let foundFaces = request.results as? [VNFaceObservation]

else {

 fatalError ("Can't find a face in the picture")

 }

 messageLabel.text = "Found \(foundFaces.count) faces in the picture"

}

The complete ViewController.swift file should look like this:

import UIKit

import Vision

import Photos

Chapter 17 Using Facial and Text Recognition

439

class ViewController: UIViewController,

UIImagePickerControllerDelegate, UINavigationControllerDelegate {

 @IBOutlet var messageLabel: UILabel!

 @IBOutlet var pictureChosen: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 func handleFaceRecognition(request: VNRequest, error: Error?) {

 �guard let foundFaces = request.results as? [VNFaceObservation]

else {

 fatalError ("Can't find a face in the picture")

 }

 �messageLabel.text = "Found \(foundFaces.count) faces in the

picture"

 }

 func analyzeImage(image: UIImage) {

 �let handler = VNImageRequestHandler(cgImage: image.

cgImage!, options: [:])

 messageLabel.text = "Analyzing picture..."

 �let request = VNDetectFaceRectanglesRequest(completionHand

ler: handleFaceRecognition)

 try! handler.perform([request])

 }

 �func imagePickerController(_ picker: UIImagePickerController,

didFinishPickingMediaWithInfo info: [UIImagePickerController.

InfoKey : Any]) {

 �if let gotImage = info[UIImagePickerController.InfoKey.

originalImage] as? UIImage {

 picker.dismiss(animated: true, completion: nil)

 pictureChosen.image = gotImage

 analyzeImage(image: gotImage)

 }

Chapter 17 Using Facial and Text Recognition

440

 }

 func getPhoto() {

 let picker = UIImagePickerController()

 picker.delegate = self

 picker.sourceType = .savedPhotosAlbum

 present(picker, animated: true, completion: nil)

 }

 @IBAction func getImage(_ sender: UIButton) {

 getPhoto()

 }

}

You can test this project on either the Simulator or on an actual iOS device

connected to your Macintosh through a USB cable. If you want to test this project on the

Simulator, you’ll need to add pictures of people in the Simulator’s Photos app. To do this,

run this project on the Simulator, then choose Hardware ➤ Home to display the Home

screen.

Now click the Safari icon (and make sure your Macintosh has an Internet

connection). This will load Safari and from there, visit any site that contains pictures of

people. When you see an image that you want to store in the Photos app in the Simulator,

move the mouse pointer over that image, hold down the mouse/trackpad button, and

slide up until a menu appears at the bottom of the screen as shown in Figure 17-2.

Chapter 17 Using Facial and Text Recognition

441

Tap the Save Image button to save the image in the Photos app on the Simulator.

Once you’ve got at least one picture stored in the Simulator’s Photos app, follow these

steps to test the FacialRecognitionApp project:

	 1.	 Make sure the FacialRecognitionApp project is loaded in Xcode.

	 2.	 Click the Run button or choose Product ➤ Run. The

FacialRecognitionApp screen appears.

	 3.	 Click the Get Image button. The Simulator’s Photos app appears.

	 4.	 Click a picture that displays faces. The app displays the number of

faces it found in the image as shown in Figure 17-3.

Figure 17-2.  Saving an image in Safari running on the Simulator

Chapter 17 Using Facial and Text Recognition

442

�Highlighting Faces in an Image
Just identifying the number of faces in an image is fine, but you can also highlight each

face with a rectangle to show you exactly which parts of a picture the Vision framework

recognized as a face. There are two parts to identify faces in a picture with a rectangle.

First, you need to use the VNFaceLandmarkRegion2D class to identify the face in the

image. In the Vision framework, landmarks are identifying parts of an image where the

most obvious landmark to identify is a face.

Once you identify a landmark (face) in an image, the second step is to draw

a rectangle around that landmark (face). The final step is to take this image, with

rectangles around one or more faces, and display it on the UIView on the user interface.

Figure 17-3.  Running the FacialRecognition app in the Simulator

Chapter 17 Using Facial and Text Recognition

443

To see how to identify faces in a picture by drawing a rectangle around them, follow

these steps:

	 1.	 Create a new iOS Single View App project and name it

AdvancedFacialRecognitionApp.

	 2.	 Click the Main.storyboard file and design the user interface

exactly like the FacialRecognitionApp with a button, an image

view, and a label (see Figure 17-1).

	 3.	 Under the import UIKit line, add the following:

import Vision

import Photos

	 4.	 Modify the class ViewController line like this:

class ViewController: UIViewController,

UIImagePickerControllerDelegate, UINavigationControllerDelegate {

	 5.	 Click the Main.storyboard file in the Navigator pane and design

the same user interface as the FacialRecognitionApp that includes

a button, image view, and label (see Figure 17-1).

	 6.	 Ctrl-drag the label and image view into the ViewController.swift

file to create two IBOutlets as follows:

@IBOutlet var messageLabel: UILabel!

@IBOutlet var pictureChosen: UIImageView!

	 7.	 Ctrl-drag the button into the bottom of the ViewController.swift

file to create an IBAction method named getImage.

	 8.	 Modify the getImage IBAction method as follows and add the

getPhoto function:

func getPhoto() {

 let picker = UIImagePickerController()

 picker.delegate = self

 picker.sourceType = .savedPhotosAlbum

 present(picker, animated: true, completion: nil)

}

Chapter 17 Using Facial and Text Recognition

444

@IBAction func getImage(_ sender: UIButton) {

 getPhoto()

}

	 9.	 Add the following functions to detect faces in a picture:

�func imagePickerController(_ picker: UIImagePickerController,

didFinishPickingMediaWithInfo info: [UIImagePickerController.

InfoKey : Any]) {

 �if let gotImage = info[UIImagePickerController.InfoKey.

originalImage] as? UIImage {

 picker.dismiss(animated: true, completion: nil)

 pictureChosen.image = gotImage

 identifyFacesWithLandmarks(image: gotImage)

 }

}

func identifyFacesWithLandmarks(image: UIImage) {

 �let handler = VNImageRequestHandler(cgImage: image.cgImage!,

options: [:])

 messageLabel.text = "Analyzing picture..."

 �let request = VNDetectFaceLandmarksRequest(completionHandler:

handleFaceLandmarksRecognition)

 try! handler.perform([request])

}

func handleFaceLandmarksRecognition(request: VNRequest, error:

Error?) {

 �guard let foundFaces = request.results as? [VNFaceObservation]

else {

 fatalError ("Problem loading picture to examine faces")

 }

 �messageLabel.text = "Found \(foundFaces.count) faces in the picture"

Chapter 17 Using Facial and Text Recognition

445

 for faceRectangle in foundFaces {

 let landmarkRegions: [VNFaceLandmarkRegion2D] = []

 �drawImage(source: pictureChosen.image!, boundary:

faceRectangle.boundingBox, faceLandmarkRegions:

landmarkRegions)

 }

}

The first function retrieves an image and then calls the

identifyFacesWithLandmarks function, which detects the

faces. This identifyFacesWithLandmarks function then calls the

handleFaceLandmarksRecognition function to detect faces and

call a drawImage function to draw rectangles around those faces.

	 10.	 Add the following function to draw rectangles around faces in a

picture:

�func drawImage(source: UIImage, boundary: CGRect,

faceLandmarkRegions: [VNFaceLandmarkRegion2D]) {

 UIGraphicsBeginImageContextWithOptions(source.size, false, 1)

 let context = UIGraphicsGetCurrentContext()!

 context.translateBy(x: 0, y: source.size.height)

 context.scaleBy(x: 1.0, y: -1.0)

 context.setLineJoin(.round)

 context.setLineCap(.round)

 context.setShouldAntialias(true)

 context.setAllowsAntialiasing(true)

 �let rect = CGRect(x: 0, y:0, width: source.size.width, height:

source.size.height)

 context.draw(source.cgImage!, in: rect)

 //draw rectangles around faces

 let fillColor = UIColor.white

 fillColor.setStroke()

Chapter 17 Using Facial and Text Recognition

446

 let rectangleWidth = source.size.width * boundary.size.width

 let rectangleHeight = source.size.height * boundary.size.height

 �context.addRect(CGRect(x: boundary.origin.x * source.size.

width, y:boundary.origin.y * source.size.height, width:

rectangleWidth, height: rectangleHeight))

 context.drawPath(using: CGPathDrawingMode.stroke)

 �let modifiedImage : UIImage =

UIGraphicsGetImageFromCurrentImageContext()!

 UIGraphicsEndImageContext()

 pictureChosen.image = modifiedImage

}

The entire ViewController.swift file should look like this:

import UIKit

import Vision

import Photos

class ViewController: UIViewController,

UIImagePickerControllerDelegate, UINavigationControllerDelegate {

 @IBOutlet var messageLabel: UILabel!

 @IBOutlet var pictureChosen: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 �func imagePickerController(_ picker: UIImagePickerController,

didFinishPickingMediaWithInfo info: [UIImagePickerController.

InfoKey : Any]) {

 �if let gotImage = info[UIImagePickerController.InfoKey.

originalImage] as? UIImage {

 picker.dismiss(animated: true, completion: nil)

 pictureChosen.image = gotImage

Chapter 17 Using Facial and Text Recognition

447

 identifyFacesWithLandmarks(image: gotImage)

 }

 }

 func identifyFacesWithLandmarks(image: UIImage) {

 �let handler = VNImageRequestHandler(cgImage: image.

cgImage!, options: [:])

 messageLabel.text = "Analyzing picture..."

 �let request = VNDetectFaceLandmarksRequest(completionHandl

er: handleFaceLandmarksRecognition)

 try! handler.perform([request])

 }

 �func handleFaceLandmarksRecognition(request: VNRequest, error:

Error?) {

 �guard let foundFaces = request.results as?

[VNFaceObservation] else {

 fatalError ("Problem loading picture to examine faces")

 }

 �messageLabel.text = "Found \(foundFaces.count) faces in the

picture"

 for faceRectangle in foundFaces {

 let landmarkRegions: [VNFaceLandmarkRegion2D] = []

 �drawImage(source: pictureChosen.image!, boundary:

faceRectangle.boundingBox, faceLandmarkRegions:

landmarkRegions)

 }

 }

 �func drawImage(source: UIImage, boundary: CGRect,

faceLandmarkRegions: [VNFaceLandmarkRegion2D]) {

 UIGraphicsBeginImageContextWithOptions(source.size, false, 1)

 let context = UIGraphicsGetCurrentContext()!

 context.translateBy(x: 0, y: source.size.height)

 context.scaleBy(x: 1.0, y: -1.0)

Chapter 17 Using Facial and Text Recognition

448

 context.setLineJoin(.round)

 context.setLineCap(.round)

 context.setShouldAntialias(true)

 context.setAllowsAntialiasing(true)

 �let rect = CGRect(x: 0, y:0, width: source.size.width,

height: source.size.height)

 context.draw(source.cgImage!, in: rect)

 //draw rectangles around faces

 let fillColor = UIColor.white

 fillColor.setStroke()

 let rectangleWidth = source.size.width * boundary.size.width

 let rectangleHeight = source.size.height * boundary.size.height

 �context.addRect(CGRect(x: boundary.origin.x * source.size.

width, y:boundary.origin.y * source.size.height, width:

rectangleWidth, height: rectangleHeight))

 context.drawPath(using: CGPathDrawingMode.stroke)

 �let modifiedImage : UIImage =

UIGraphicsGetImageFromCurrentImageContext()!

 UIGraphicsEndImageContext()

 pictureChosen.image = modifiedImage

 }

 func getPhoto() {

 let picker = UIImagePickerController()

 picker.delegate = self

 picker.sourceType = .savedPhotosAlbum

 present(picker, animated: true, completion: nil)

 }

 @IBAction func getImage(_ sender: UIButton) {

 getPhoto()

 }

}

Chapter 17 Using Facial and Text Recognition

449

	 11.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears.

	 12.	 Click the Get Image button to display a list of pictures stored in the

Photos app.

	 13.	 Click the picture that displays faces. The app displays white

rectangles around all detected faces as shown in Figure 17-4.

Figure 17-4.  Displaying rectangles around faces in a picture

	 14.	 Choose Simulator ➤ Quit Simulator.

Chapter 17 Using Facial and Text Recognition

450

�Highlighting Parts of a Face in an Image
Besides identifying faces in an image with a rectangle, the Vision framework can also

identify and highlight the following parts of a face:

•	 Contour of the face

•	 Nose and nosecrest

•	 Inner and outer lips

•	 Eye, eyebrow, and pupil for both the left and right eyes

•	 Median line

Note T o get a complete listing of all the parts of a face the Vision framework can
identify, visit Apple’s developer’s web site at https://developer.apple.com/
documentation/vision/vnfacelandmarks2d.

To identify facial features, we need to modify the code in the

AdvancedFacialRecognitionApp project. Within the handleFacelandmarksRecognition

function, we’ll need to look for landmarks within a face in an image by using this code:

 guard let landmarks = faceRectangle.landmarks else {

 continue

 }

Next we’ll need to look for specific landmarks such as a left eye or nose. Once we find

a specific facial feature, we need to store this in the landmarkRegions array using code

such as the following:

 if let faceContour = landmarks.faceContour {

 landmarkRegions.append(faceContour)

 }

 if let leftEye = landmarks.leftEye {

 landmarkRegions.append(leftEye)

 }

Chapter 17 Using Facial and Text Recognition

https://developer.apple.com/documentation/vision/vnfacelandmarks2d
https://developer.apple.com/documentation/vision/vnfacelandmarks2d

451

 if let rightEye = landmarks.rightEye {

 landmarkRegions.append(rightEye)

 }

 if let nose = landmarks.nose {

 landmarkRegions.append(nose)

 }

The complete handleFaceLandmarksRecognition function should look like this:

 func handleFaceLandmarksRecognition(request: VNRequest, error: Error?) {

 guard let foundFaces = request.results as? [VNFaceObservation] else {

 fatalError ("Problem loading picture to examine faces")

 }

 messageLabel.text = "Found \(foundFaces.count) faces in the picture"

 for faceRectangle in foundFaces {

 guard let landmarks = faceRectangle.landmarks else {

 continue

 }

 var landmarkRegions: [VNFaceLandmarkRegion2D] = []

 if let faceContour = landmarks.faceContour {

 landmarkRegions.append(faceContour)

 }

 if let leftEye = landmarks.leftEye {

 landmarkRegions.append(leftEye)

 }

 if let rightEye = landmarks.rightEye {

 landmarkRegions.append(rightEye)

 }

 if let nose = landmarks.nose {

 landmarkRegions.append(nose)

 }

Chapter 17 Using Facial and Text Recognition

452

 �drawImage(source: pictureChosen.image!, boundary:

faceRectangle.boundingBox, faceLandmarkRegions:

landmarkRegions)

 }

 }

The drawImage function needs to be modified to highlight any chosen facial

features. First, change the fillColor constant to a variable like this:

var fillColor = UIColor.white

Then define a color, such as red, to highlight facial features and draw those lines as

follows:

 fillColor = UIColor.red

 fillColor.setStroke()

 context.setLineWidth(2.0)

 for faceLandmarkRegion in faceLandmarkRegions {

 var points: [CGPoint] = []

 for i in 0..<faceLandmarkRegion.pointCount {

 let point = faceLandmarkRegion.normalizedPoints[i]

 let p = CGPoint(x: CGFloat(point.x), y: CGFloat(point.y))

 points.append(p)

 }

 �let facialPoints = points.map { CGPoint(x: boundary.origin.x *

source.size.width + $0.x * rectangleWidth, y: boundary.origin.y *

source.size.height + $0.y * rectangleHeight) }

 context.addLines(between: facialPoints)

 context.drawPath(using: CGPathDrawingMode.stroke)

 }

The complete drawImage function should look like this:

 �func drawImage(source: UIImage, boundary: CGRect, faceLandmarkRegions:

[VNFaceLandmarkRegion2D]) {

 UIGraphicsBeginImageContextWithOptions(source.size, false, 1)

 let context = UIGraphicsGetCurrentContext()!

 context.translateBy(x: 0, y: source.size.height)

Chapter 17 Using Facial and Text Recognition

453

 context.scaleBy(x: 1.0, y: -1.0)

 context.setLineJoin(.round)

 context.setLineCap(.round)

 context.setShouldAntialias(true)

 context.setAllowsAntialiasing(true)

 �let rect = CGRect(x: 0, y:0, width: source.size.width, height:

source.size.height)

 context.draw(source.cgImage!, in: rect)

 //draw rectangles around faces

 var fillColor = UIColor.white

 fillColor.setStroke()

 let rectangleWidth = source.size.width * boundary.size.width

 let rectangleHeight = source.size.height * boundary.size.height

 �context.addRect(CGRect(x: boundary.origin.x * source.size.width,

y:boundary.origin.y * source.size.height, width: rectangleWidth,

height: rectangleHeight))

 context.drawPath(using: CGPathDrawingMode.stroke)

 //draw facial features

 fillColor = UIColor.red

 fillColor.setStroke()

 context.setLineWidth(2.0)

 for faceLandmarkRegion in faceLandmarkRegions {

 var points: [CGPoint] = []

 for i in 0..<faceLandmarkRegion.pointCount {

 let point = faceLandmarkRegion.normalizedPoints[i]

 let p = CGPoint(x: CGFloat(point.x), y: CGFloat(point.y))

 points.append(p)

 }

 �let facialPoints = points.map { CGPoint(x: boundary.origin.x *

source.size.width + $0.x * rectangleWidth, y: boundary.origin.y *

source.size.height + $0.y * rectangleHeight) }

Chapter 17 Using Facial and Text Recognition

454

 context.addLines(between: facialPoints)

 context.drawPath(using: CGPathDrawingMode.stroke)

 }

 �let modifiedImage : UIImage =

UIGraphicsGetImageFromCurrentImageContext()!

 UIGraphicsEndImageContext()

 pictureChosen.image = modifiedImage

 }

The complete ViewController.swift file should look like this:

 import UIKit

 import Vision

 import Photos

 �class ViewController: UIViewController,

UIImagePickerControllerDelegate, UINavigationControllerDelegate {

 @IBOutlet var messageLabel: UILabel!

 @IBOutlet var pictureChosen: UIImageView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 �func imagePickerController(_ picker: UIImagePickerController,

didFinishPickingMediaWithInfo info: [UIImagePickerController.

InfoKey : Any]) {

 �if let gotImage = info[UIImagePickerController.InfoKey.

originalImage] as? UIImage {

 picker.dismiss(animated: true, completion: nil)

 pictureChosen.image = gotImage

 identifyFacesWithLandmarks(image: gotImage)

 }

 }

Chapter 17 Using Facial and Text Recognition

455

 func identifyFacesWithLandmarks(image: UIImage) {

 �let handler = VNImageRequestHandler(cgImage: image.cgImage!,

options: [:])

 messageLabel.text = "Analyzing picture..."

 �let request = VNDetectFaceLandmarksRequest(completionHandler:

handleFaceLandmarksRecognition)

 try! handler.perform([request])

 }

 �func handleFaceLandmarksRecognition(request: VNRequest, error:

Error?) {

 �guard let foundFaces = request.results as? [VNFaceObservation]

else {

 fatalError ("Problem loading picture to examine faces")

 }

 �messageLabel.text = "Found \(foundFaces.count) faces in the

picture"

 for faceRectangle in foundFaces {

 guard let landmarks = faceRectangle.landmarks else {

 continue

 }

 var landmarkRegions: [VNFaceLandmarkRegion2D] = []

 if let faceContour = landmarks.faceContour {

 landmarkRegions.append(faceContour)

 }

 if let leftEye = landmarks.leftEye {

 landmarkRegions.append(leftEye)

 }

 if let rightEye = landmarks.rightEye {

 landmarkRegions.append(rightEye)

 }

Chapter 17 Using Facial and Text Recognition

456

 if let nose = landmarks.nose {

 landmarkRegions.append(nose)

 }

 �drawImage(source: pictureChosen.image!, boundary:

faceRectangle.boundingBox, faceLandmarkRegions:

landmarkRegions)

 }

 }

 �func drawImage(source: UIImage, boundary: CGRect,

faceLandmarkRegions: [VNFaceLandmarkRegion2D]) {

 UIGraphicsBeginImageContextWithOptions(source.size, false, 1)

 let context = UIGraphicsGetCurrentContext()!

 context.translateBy(x: 0, y: source.size.height)

 context.scaleBy(x: 1.0, y: -1.0)

 context.setLineJoin(.round)

 context.setLineCap(.round)

 context.setShouldAntialias(true)

 context.setAllowsAntialiasing(true)

 �let rect = CGRect(x: 0, y:0, width: source.size.width, height:

source.size.height)

 context.draw(source.cgImage!, in: rect)

 //draw rectangles around faces

 var fillColor = UIColor.white

 fillColor.setStroke()

 let rectangleWidth = source.size.width * boundary.size.width

 let rectangleHeight = source.size.height * boundary.size.height

 �context.addRect(CGRect(x: boundary.origin.x * source.size.

width, y:boundary.origin.y * source.size.height, width:

rectangleWidth, height: rectangleHeight))

 context.drawPath(using: CGPathDrawingMode.stroke)

Chapter 17 Using Facial and Text Recognition

457

 //draw facial features

 fillColor = UIColor.red

 fillColor.setStroke()

 context.setLineWidth(2.0)

 for faceLandmarkRegion in faceLandmarkRegions {

 var points: [CGPoint] = []

 for i in 0..<faceLandmarkRegion.pointCount {

 let point = faceLandmarkRegion.normalizedPoints[i]

 let p = CGPoint(x: CGFloat(point.x), y: CGFloat(point.y))

 points.append(p)

 }

 �let facialPoints = points.map { CGPoint(x: boundary.origin.x

* source.size.width + $0.x * rectangleWidth, y: boundary.

origin.y * source.size.height + $0.y * rectangleHeight) }

 context.addLines(between: facialPoints)

 context.drawPath(using: CGPathDrawingMode.stroke)

 }

 �let modifiedImage : UIImage =

UIGraphicsGetImageFromCurrentImageContext()!

 UIGraphicsEndImageContext()

 pictureChosen.image = modifiedImage

 }

 func getPhoto() {

 let picker = UIImagePickerController()

 picker.delegate = self

 picker.sourceType = .savedPhotosAlbum

 present(picker, animated: true, completion: nil)

 }

 @IBAction func getImage(_ sender: UIButton) {

 getPhoto()

 }

 }

Running this project will then highlight the face contour, nose, and left and right eyes

as shown in Figure 17-5.

Chapter 17 Using Facial and Text Recognition

458

�Recognizing Text in an Image
Besides recognizing text, the Vision framework can also recognize text in an image or

through a camera. Just like recognizing faces, text recognition can recognize text, even if

that text appears in different languages. To see how the Vision framework can detect text,

follow these steps:

	 1.	 Create a new iOS Single View App project and name it

TextRecognitionApp.

	 2.	 Click the ViewController.swift file in the Navigator pane.

Figure 17-5.  Highlighting facial features in a picture

Chapter 17 Using Facial and Text Recognition

459

	 3.	 Under the import UIKit line, add the following to allow access to

the camera and vision recognition frameworks:

import Vision

import AVFoundation

	 4.	 Edit the class ViewController line to adopt the delegate for

capturing video output as follows:

class ViewController: UIViewController,

AVCaptureVideoDataOutputSampleBufferDelegate {

	 5.	 Click the Main.storyboard file in the Navigator pane.

	 6.	 Click the Library icon and drag and drop an image view. The exact

placement doesn’t matter, but you’ll want the UIImageView to

be as large as possible because this is where you’ll see the video

output that identifies text.

	 7.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints.

	 8.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

	 9.	 Move the mouse pointer over the image view, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 10.	 Release the Control key and the left mouse button. A popup

window appears.

	 11.	 Click in the Name text field, type textImage, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var textImage: UIImageView!

Now we need to create one variable to capture video from the

camera and a second variable to analyze the image.

Chapter 17 Using Facial and Text Recognition

460

	 12.	 Add the following underneath the IBOutlet:

var session = AVCaptureSession()

var requests = [VNRequest]()

There are two steps to identify text in an image through the

camera. First, we need to get an image from the camera. Second,

we need to identify text in that image.

	 13.	 Modify the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 getVideo()

 detectText()

}

To getVideo function needs to define the camera to record video

and then capture that video. Finally, it must display that video in

the UIImageView using the textImage IBOutlet.

	 14.	 Add the following getVideo function:

func getVideo() {

 session.sessionPreset = AVCaptureSession.Preset.photo

 let camera = AVCaptureDevice.default(for: AVMediaType.video)

 let cameraInput = try! AVCaptureDeviceInput(device: camera!)

 let cameraOutput = AVCaptureVideoDataOutput()

 �cameraOutput.videoSettings = [kCVPixelBufferPixelFormatTypeKey

as String: Int(kCVPixelFormatType_32BGRA)]

 �cameraOutput.setSampleBufferDelegate(self, queue:

DispatchQueue.global(qos: DispatchQoS.QoSClass.default))

 session.addInput(cameraInput)

 session.addOutput(cameraOutput)

 let videoLayer = AVCaptureVideoPreviewLayer(session: session)

 videoLayer.frame = textImage.bounds

 textImage.layer.addSublayer(videoLayer)

 session.startRunning()

}

Chapter 17 Using Facial and Text Recognition

461

	 15.	 Add the following function to capture an image from the camera:

�func captureOutput(_ output: AVCaptureOutput, didOutput

sampleBuffer: CMSampleBuffer, from connection:

AVCaptureConnection) {

 �guard let pixelBuffer = CMSampleBufferGetImageBuffer

(sampleBuffer) else {

 return

 }

 var requestOptions:[VNImageOption : Any] = [:]

 �if let cameraData = CMGetAttachment(sampleBuffer, key:

kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix,

attachmentModeOut: nil) {

 requestOptions = [.cameraIntrinsics:cameraData]

 }

 �let imageRequestHandler = VNImageRequestHandler(cvPixelBuffer:

pixelBuffer, orientation: CGImagePropertyOrientation

(rawValue: 6)!, options: requestOptions)

 do {

 try imageRequestHandler.perform(self.requests)

 } catch {

 print(error)

 }

}

All this code so far simply gets the camera to work on an iOS device,

but the app won’t be able to access the camera until the user gives

permission to do so. The final step is to click the Info.plist file in the

Navigator pane and add the Privacy – Camera Usage Description

key. Under the Value column, type descriptive text such as “Need to

use camera to view text” as shown in Figure 17-6.

	 16.	 Click the Info.plist file in the Navigator pane.

	 17.	 Move the mouse pointer over the bottom row until a + and – icon

appears.

Chapter 17 Using Facial and Text Recognition

462

	 18.	 Click the + icon. Xcode adds a new row.

	 19.	 Click in the Key column in the newly added row so a popup menu

appears and choose Privacy – Camera Usage Description as

shown in Figure 17-6.

	 20.	 Click in the Value column and type a message such as “App needs

permission to use camera”.

	 21.	 Click the ViewController.swift file in the Navigator pane.

	 22.	 Add the following function to detect text in an image:

func detectText() {

 �let textRequest = VNDetectTextRectanglesRequest

(completionHandler: handleText)

 textRequest.reportCharacterBoxes = true

 requests = [textRequest]

}

Once this function identifies text in an image, it calls a second

function called handleText to define where to display a rectangle

on the image. Another function called identifyWords does the

actual work of drawing a rectangle where text appears.

Figure 17-6.  Editing the Info.plist file lets an app ask for permission to use the
camera

Chapter 17 Using Facial and Text Recognition

463

	 23.	 Add the following functions in the ViewController.swift file:

func handleText(request: VNRequest, error: Error?) {

 guard let observations = request.results else {

 print ("No text found")

 return

 }

 let result = observations.map({$0 as? VNTextObservation})

 DispatchQueue.main.async() {

 self.textImage.layer.sublayers?.removeSubrange(1...)

 for region in result {

 guard let foundRegion = region else {

 continue

 }

 self.identifyWords(box: foundRegion)

 }

 }

}

func identifyWords(box: VNTextObservation) {

 guard let rectangle = box.characterBoxes else {

 return

 }

 var maxX: CGFloat = 9999.0

 var minX: CGFloat = 0.0

 var maxY: CGFloat = 9999.0

 var minY: CGFloat = 0.0

 for char in rectangle {

 if char.bottomLeft.x < maxX {

 maxX = char.bottomLeft.x

 }

 if char.bottomRight.x > minX {

 minX = char.bottomRight.x

 }

Chapter 17 Using Facial and Text Recognition

464

 if char.bottomRight.y < maxY {

 maxY = char.bottomRight.y

 }

 if char.topRight.y > minY {

 minY = char.topRight.y

 }

 }

 let xCord = maxX * textImage.frame.size.width

 let yCord = (1 - minY) * textImage.frame.size.height

 let width = (minX - maxX) * textImage.frame.size.width

 let height = (minY - maxY) * textImage.frame.size.height

 let outline = CALayer()

 �outline.frame = CGRect(x: xCord, y: yCord, width: width,

height: height)

 outline.borderWidth = 2.0

 outline.borderColor = UIColor.red.cgColor

 textImage.layer.addSublayer(outline)

}

The entire ViewController.swift file should look like this:

import UIKit

import Vision

import AVFoundation

class ViewController: UIViewController,

AVCaptureVideoDataOutputSampleBufferDelegate {

 @IBOutlet var textImage: UIImageView!

 var session = AVCaptureSession()

 var requests = [VNRequest]()

 override func viewDidLoad() {

 super.viewDidLoad()

 getVideo()

 detectText()

 }

Chapter 17 Using Facial and Text Recognition

465

 func getVideo() {

 session.sessionPreset = AVCaptureSession.Preset.photo

 let camera = AVCaptureDevice.default(for: AVMediaType.video)

 let cameraInput = try! AVCaptureDeviceInput(device: camera!)

 let cameraOutput = AVCaptureVideoDataOutput()

 �cameraOutput.videoSettings =

[kCVPixelBufferPixelFormatTypeKey as String: Int(kCVPixelF

ormatType_32BGRA)]

 �cameraOutput.setSampleBufferDelegate(self, queue:

DispatchQueue.global(qos: DispatchQoS.QoSClass.default))

 session.addInput(cameraInput)

 session.addOutput(cameraOutput)

 let videoLayer = AVCaptureVideoPreviewLayer(session: session)

 videoLayer.frame = textImage.bounds

 textImage.layer.addSublayer(videoLayer)

 session.startRunning()

 }

 �func captureOutput(_ output: AVCaptureOutput, didOutput

sampleBuffer: CMSampleBuffer, from connection:

AVCaptureConnection) {

 �guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampl

eBuffer) else {

 return

 }

 var requestOptions:[VNImageOption : Any] = [:]

 �if let cameraData = CMGetAttachment(sampleBuffer, key:

kCMSampleBufferAttachmentKey_CameraIntrinsicMatrix,

attachmentModeOut: nil) {

 requestOptions = [.cameraIntrinsics:cameraData]

 }

 �let imageRequestHandler = VNImageRequestHandler(cvPixelBuf

fer: pixelBuffer, orientation: CGImagePropertyOrientation(

rawValue: 6)!, options: requestOptions)

Chapter 17 Using Facial and Text Recognition

466

 do {

 try imageRequestHandler.perform(self.requests)

 } catch {

 print(error)

 }

 }

 func detectText() {

 �let textRequest = VNDetectTextRectanglesRequest(completion

Handler: handleText)

 textRequest.reportCharacterBoxes = true

 requests = [textRequest]

 }

 func handleText(request: VNRequest, error: Error?) {

 guard let observations = request.results else {

 print ("No text found")

 return

 }

 let result = observations.map({$0 as? VNTextObservation})

 DispatchQueue.main.async() {

 self.textImage.layer.sublayers?.removeSubrange(1...)

 for region in result {

 guard let foundRegion = region else {

 continue

 }

 self.identifyWords(box: foundRegion)

 }

 }

 }

 func identifyWords(box: VNTextObservation) {

 guard let rectangle = box.characterBoxes else {

 return

 }

Chapter 17 Using Facial and Text Recognition

467

 var maxX: CGFloat = 9999.0

 var minX: CGFloat = 0.0

 var maxY: CGFloat = 9999.0

 var minY: CGFloat = 0.0

 for char in rectangle {

 if char.bottomLeft.x < maxX {

 maxX = char.bottomLeft.x

 }

 if char.bottomRight.x > minX {

 minX = char.bottomRight.x

 }

 if char.bottomRight.y < maxY {

 maxY = char.bottomRight.y

 }

 if char.topRight.y > minY {

 minY = char.topRight.y

 }

 }

 let xCord = maxX * textImage.frame.size.width

 let yCord = (1 - minY) * textImage.frame.size.height

 let width = (minX - maxX) * textImage.frame.size.width

 let height = (minY - maxY) * textImage.frame.size.height

 let outline = CALayer()

 �outline.frame = CGRect(x: xCord, y: yCord, width: width,

height: height)

 outline.borderWidth = 2.0

 outline.borderColor = UIColor.red.cgColor

 textImage.layer.addSublayer(outline)

 }

}

Chapter 17 Using Facial and Text Recognition

468

Note T o test this app, you’ll need to connect an iPhone or iPad with a camera to
your Macintosh using a USB cable.

	 24.	 Connect an iOS device to your Macintosh through its USB cable.

	 25.	 Click the Scheme menu and choose your iOS device.

	 26.	 Click the Run button or choose Product ➤ Run. The app appears.

	 27.	 Point the camera at text. Whatever the camera sees appears inside

the UIImageView on the user interface and displays rectangles

around text. While the Vision framework may not always be

accurate in identifying text in an image, it can recognize text in

different languages as shown in Figure 17-7.

	 28.	 Click the Stop button in Xcode, or choose Product ➤ Stop.

Figure 17-7.  Identifying text on a sign through the iPhone camera

Chapter 17 Using Facial and Text Recognition

469

�Summary
As you can see, the Vision framework contains enough artificial intelligence to identify

and recognize faces in a picture. Not only can you identify the number of faces, but you

can also identify the faces by drawing a rectangle around them in a picture.

Besides recognizing faces, the Vision framework can also identify specific facial

features such as eyes, nose, and lips. If your app works with images containing people or

text, you can use the Vision framework to identify faces, facial features, and text (even in

different languages) to give your app extra features without writing much code yourself.

Chapter 17 Using Facial and Text Recognition

471
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_18

CHAPTER 18

Using Speech
The Speech framework lets apps recognize audio commands as a supplement to taps

and gestures. In addition, the Speech framework can also transcribe speech into text. By

adding speech recognition features, your app can offer more ways for the user to interact

in a natural manner that’s easy for everyone to do.

Before an app can use speech recognition, the user must give permission for the app

to access the microphone and use speech recognition. You may also want to make your

users aware that speech recognition may send audio data to Apple’s servers over the

Internet to improve accuracy. That’s why it’s important to get the user’s permission to

use the microphone and use speech recognition due to privacy concerns.

By adding speech recognition to your app, your user interface is no longer limited to

the touch screen. Speech recognition may never replace the touch screen, but it can give

users another way to interact with your app by just speaking to it out loud.

Note  You can only test speech recognition on an actual iOS device. You cannot
test speech recognition with the Simulator program.

�Converting Speech to Text
The Speech framework that Apple provides can convert spoken words into printed text,

even in different languages based on your current location. To see how this speech to

text recognition feature works, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

Speech2TextApp.

	 2.	 Click the Info.plist file in the Navigator pane.

472

	 3.	 Move the mouse pointer over the bottom row until a + and – icon

appears.

	 4.	 Click the + icon. Xcode adds a new row.

	 5.	 Click in the Key column in the newly added row so a popup

menu appears and choose Privacy – Speech Recognition Usage

Description. Then click in the Value column and type descriptive

text such as “Need to send data to Apple’s servers”.

	 6.	 Repeat steps 3–5 except choose Privacy – Microphone Usage

Description, click in the Value column, and type descriptive text

such as “Must use the microphone to hear speech” as shown in

Figure 18-1.

	 7.	 Click the Main.storyboard file in the Navigator pane.

	 8.	 Click the Library icon and drag and drop a label and two buttons.

	 9.	 Double-click one button, type Start Recognizing Speech, and

press Enter.

	 10.	 Double-click the second button, type Stop Recording, and press

Enter.

	 11.	 Click the label and choose View ➤ Inspectors ➤ Show Attributes

Inspector, or click the Attributes Inspector icon in the upper right

corner of the Xcode window.

Figure 18-1.  Adding two privacy settings in the Info.plist file

Chapter 18 Using Speech

473

	 12.	 Click in the Lines text field, type 0, and press Enter.

	 13.	 Resize the label so it’s tall and wide enough to display text. The

entire user interface should look something like Figure 18-2.

Figure 18-2.  Designing the Speech2TextApp user interface with a label and two
buttons

Chapter 18 Using Speech

474

	 14.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the bottom of the menu to define constraints for all

items.

	 15.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

	 16.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 17.	 Release the Control key and the left mouse button. A popup

window appears.

	 18.	 Click in the Name text field, type textLabel, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var textLabel: UILabel!

	 19.	 Move the mouse pointer over the Start Recognizing Speech

button, hold down the Control key, and Ctrl-drag under the class

ViewController line in the ViewController.swift file.

	 20.	 Release the Control key and the left mouse button. A popup

window appears.

	 21.	 Click in the Name text field, type recordButton, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var recordButton: UIButton!

	 22.	 Move the mouse pointer over the Stop Recording button,

hold down the Control key, and Ctrl-drag under the class

ViewController line in the ViewController.swift file.

	 23.	 Release the Control key and the left mouse button. A popup

window appears.

Chapter 18 Using Speech

475

	 24.	 Click in the Name text field, type stopButton, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var stopButton: UIButton!

	 25.	 Move the mouse pointer over the Start Recognizing Speech

button, hold down the Control key, and Ctrl-drag above the last

curly bracket in the ViewController.swift file.

	 26.	 Release the Control key and the left mouse button. A popup

window appears.

	 27.	 Click in the Name text field, type startRecording, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates an IBAction method.

	 28.	 Move the mouse pointer over the Stop Recording button, hold

down the Control key, and Ctrl-drag above the last curly bracket in

the ViewController.swift file in the ViewController.swift file.

	 29.	 Release the Control key and the left mouse button. A popup

window appears.

	 30.	 Click in the Name text field, type stopRecording, click the Type

popup menu and choose UIButton, and click the Connect button.

Xcode creates an IBAction method.

	 31.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 32.	 Click the ViewController.swift file in the Navigator pane.

	 33.	 Under the import UIKit line, add the following to import the

Speech framework:

import Speech

	 34.	 Edit the class ViewController line to adopt the

SFSpeechRecognizerDelegate like this:

class ViewController: UIViewController, SFSpeechRecognizerDelegate {

Chapter 18 Using Speech

476

	 35.	 Under the IBOutlet, add the following to create an instance of the

AVAudioEngine class:

let audioEngine = AVAudioEngine()

	 36.	 Add a speech recognizer and define a location to detect a specific

type of language like this:

let speechRecognizer = SFSpeechRecognizer(locale: Locale(identifier:

"en-US"))

	 37.	 Add a request to detect spoken audio:

var request = SFSpeechAudioBufferRecognitionRequest()

	 38.	 Add an optional variable to store the recognition task. Since the

task may or may not succeed, it needs to be an optional variable:

var recognitionTask : SFSpeechRecognitionTask?

	 39.	 Modify the two IBAction methods for the two buttons as follows:

@IBAction func startRecording(_ sender: UIButton) {

 recordButton.isEnabled = false

 stopButton.isEnabled = true

 recognizeSpeech()

}

@IBAction func stopRecording(_ sender: UIButton) {

 recordButton.isEnabled = true

 stopButton.isEnabled = false

 stopSpeech()

}

At this point we need to write two functions: recognizeSpeech() and

stopSpeech().

	 40.	 Add the stopSpeech() function as follows:

func stopSpeech() {

 audioEngine.stop()

 request.endAudio()

Chapter 18 Using Speech

477

 recognitionTask?.cancel()

 audioEngine.inputNode.removeTap(onBus: 0)

}

	 41.	 Add a recognizeSpeech() function as follows:

func recognizeSpeech() {

 let node = audioEngine.inputNode

 request = SFSpeechAudioBufferRecognitionRequest()

 request.shouldReportPartialResults = true

 let recordingFormat = node.outputFormat(forBus: 0)

 �node.installTap(onBus: 0, bufferSize: 1024, format:

recordingFormat) { (buffer, _) in

 self.request.append(buffer)

 }

 audioEngine.prepare()

 do {

 try audioEngine.start()

 } catch {

 return print (error)

 }

 guard let recognizeMe = SFSpeechRecognizer() else {

 return

 }

 if !recognizeMe.isAvailable {

 return

 }

 �recognitionTask = speechRecognizer?.recognitionTask(with:

request, resultHandler: {result, error in

 if let result = result {

 �let transcribedString = result.bestTranscription.

formattedString

 self.textLabel.text = transcribedString

Chapter 18 Using Speech

478

 } else if let error = error {

 print(error)

 }

 })

}

The first few lines of the recognizeSpeech() function require an audio engine

to process data in nodes, so we need to get that data and create a request to

recognize speech. The first few lines of code in the recognizeSpeech function

do this:

let node = audioEngine.inputNode

request = SFSpeechAudioBufferRecognitionRequest()

request.shouldReportPartialResults = true

let recordingFormat = node.outputFormat(forBus: 0)

�node.installTap(onBus: 0, bufferSize: 1024, format:

recordingFormat) { (buffer, _) in

 self.request.append(buffer)

}

Next we need to catch potential errors in case the audio engine can’t start or if

the speech recognizer cannot be accessed:

audioEngine.prepare()

do {

 try audioEngine.start()

} catch {

 return print (error)

}

guard let recognizeMe = SFSpeechRecognizer() else {

 return

}

if !recognizeMe.isAvailable {

 return

}

Chapter 18 Using Speech

479

Finally, we need to recognize the spoken speech and transcribe it to text,

which will appear in the textLabel IBOutlet:

�recognitionTask = speechRecognizer?.recognitionTask(with: request,

resultHandler: {result, error in

 if let result = result {

 �let transcribedString = result.bestTranscription.

formattedString

 self.textLabel.text = transcribedString

 } else if let error = error {

 print(error)

 }

})

The entire ViewController.swift file should look like this:

import UIKit

import Speech

�class ViewController: UIViewController, SFSpeechRecognizerDelegate {

 @IBOutlet var recordButton: UIButton!

 @IBOutlet var stopButton: UIButton!

 @IBOutlet var textLabel: UILabel!

 let audioEngine = AVAudioEngine()

 �let speechRecognizer = SFSpeechRecognizer(locale:

Locale(identifier: "en-US"))

 var request = SFSpeechAudioBufferRecognitionRequest()

 var recognitionTask : SFSpeechRecognitionTask?

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 func stopSpeech() {

 audioEngine.stop()

 request.endAudio()

Chapter 18 Using Speech

480

 recognitionTask?.cancel()

 audioEngine.inputNode.removeTap(onBus: 0)

 }

 func recognizeSpeech() {

 let node = audioEngine.inputNode

 request = SFSpeechAudioBufferRecognitionRequest()

 request.shouldReportPartialResults = true

 let recordingFormat = node.outputFormat(forBus: 0)

 �node.installTap(onBus: 0, bufferSize: 1024, format:

recordingFormat) { (buffer, _) in

 self.request.append(buffer)

 }

 audioEngine.prepare()

 do {

 try audioEngine.start()

 } catch {

 return print (error)

 }

 guard let recognizeMe = SFSpeechRecognizer() else {

 return

 }

 if !recognizeMe.isAvailable {

 return

 }

 �recognitionTask = speechRecognizer?.recognitionTask(with:

request, resultHandler: {result, error in

 if let result = result {

 �let transcribedString = result.bestTranscription.

formattedString

 self.textLabel.text = transcribedString

 } else if let error = error {

Chapter 18 Using Speech

481

 print(error)

 }

 })

 }

 @IBAction func startRecording(_ sender: UIButton) {

 recordButton.isEnabled = false

 stopButton.isEnabled = true

 recognizeSpeech()

 }

 @IBAction func stopRecording(_ sender: UIButton) {

 recordButton.isEnabled = true

 stopButton.isEnabled = false

 stopSpeech()

 }

}

	 42.	 Connect an iOS device to your Macintosh through its USB cable.

	 43.	 Click the Scheme popup menu in the upper left corner of the

Xcode window and choose your iOS device.

	 44.	 Click the Run button or choose Product ➤ Run. The first time you

run the app, it will ask permission to access the microphone and

send your data to Apple’s servers.

	 45.	 Tap the Start Recognizing Speech button.

	 46.	 Speak a sentence and the transcribed text should appear in the

label. Then tap the Stop Recording button when you’re done. The

transcribed text may make mistakes, but in general, you’ll find it’s

fairly accurate in transcribing common words into text as shown

in Figure 18-3.

Chapter 18 Using Speech

482

	 47.	 Click the Stop button in Xcode, or choose Product ➤ Stop.

�Recognizing Spoken Commands
Besides transcribing spoken speech into text, the Speech framework can also recognize

specific spoken words that you must define ahead of time. This gives your app the ability

to respond to spoken commands as a way to interact with the user.

Just be aware that in most languages, words may sound alike but be spelled

differently. For example, in English, “red” and “read” sound the same and “too,” “to,”

and “two” also sound alike. When identifying spoken commands, be aware of words that

sound alike but may have completely different meanings.

Figure 18-3.  Running the Speech2Text project on an iPhone

Chapter 18 Using Speech

483

To recognize spoken commands, we simply need to use a switch statement to detect

a specific word or phrase. To see how to recognize spoken commands, follow these steps:

	 1.	 Make sure the Speech2TextApp project is loaded into Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Add the following function to define specific words to recognize as

spoken commands:

func checkSpokenCommand (commandString: String) {

 switch commandString {

 case "Purple":

 textLabel.backgroundColor = UIColor.purple

 case "Green":

 textLabel.backgroundColor = UIColor.green

 case "Yellow":

 textLabel.backgroundColor = UIColor.yellow

 default:

 textLabel.backgroundColor = UIColor.white

 }

}

If the user says “purple,” “green,” or “yellow,” the app will change

the UILabel background to a different color. If the user says

anything else, the UILabel background will turn to white. Now

we need to call this checkSpokenCommand function inside the

recognizeSpeech function like this:

 // Chezzzzzzzzzzzck for spoken command

self.checkSpokenCommand(commandString: transcribedString)

	 4.	 Modify the recognizeSpeech() function as follows:

func recognizeSpeech() {

 let node = audioEngine.inputNode

 request = SFSpeechAudioBufferRecognitionRequest()

 request.shouldReportPartialResults = true

Chapter 18 Using Speech

484

 let recordingFormat = node.outputFormat(forBus: 0)

 �node.installTap(onBus: 0, bufferSize: 1024, format:

recordingFormat) { (buffer, _) in

 self.request.append(buffer)

 }

 audioEngine.prepare()

 do {

 try audioEngine.start()

 } catch {

 return print (error)

 }

 guard let recognizeMe = SFSpeechRecognizer() else {

 return

 }

 if !recognizeMe.isAvailable {

 return

 }

 �recognitionTask = speechRecognizer?.recognitionTask(with:

request, resultHandler: {result, error in

 if let result = result {

 �let transcribedString = result.bestTranscription.

formattedString

 self.textLabel.text = transcribedString

 // Check for spoken command

 �self.checkSpokenCommand(commandString:

transcribedString)

 } else if let error = error {

 print(error)

 }

 })

}

Chapter 18 Using Speech

485

	 5.	 Connect an iOS device to your Macintosh through its USB cable.

	 6.	 Click the Scheme popup menu in the upper left corner of the

Xcode window and choose your iOS device.

	 7.	 Click the Run button or choose Product ➤ Run.

	 8.	 Tap the Start Recognizing Speech button.

	 9.	 Say one of the three words (“purple,” “green,” or “yellow”) that

will change the background color of the label. When the app

recognizes one of these three command words, it changes the

label background color as shown in Figure 18-4.

	 10.	 Click the Stop button in Xcode, or choose Product ➤ Stop.

Figure 18-4.  Running the Speech2Text project on an iPhone to change the
background color of the label

Chapter 18 Using Speech

486

�Turning Text to Speech
Just as Swift can recognize spoken commands and convert spoken words into text, so

can Swift do it the other way around by reading text out loud. To read text out loud, you

need to use the AVFoundation framework, which gives your app access to a speech

synthesizer.

This speech synthesizer is based on your current location and default language such

as American English, Australian English, or United Kingdom English. Then the speech

synthesizer can read text stored in a string that can be read at a fast or slow rate.

To see how to use the speech synthesizer, follow these steps:

	 1.	 Create a new iOS Single View App project and name it

Text2SpeechApp.

	 2.	 Click the Main.storyboard file in the Navigator pane.

	 3.	 Click the Library icon and drag and drop a slider, button, and text

view.

	 4.	 Double-click the button, type Read Text Out Loud, and press

Enter.

	 5.	 Resize the text view, double-click the text view, and type some

text such as This is a test of the emergency broadcasting system.
This is only a test. The user interface should look similar to

Figure 18-5.

Chapter 18 Using Speech

487

	 6.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints at the bottom of the menu to define constraints for all

items.

	 7.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

	 8.	 Move the mouse pointer over the text view, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

Figure 18-5.  The user interface for the Text2Speech project

Chapter 18 Using Speech

488

	 9.	 Release the Control key and the left mouse button. A popup

window appears.

	 10.	 Click in the Name text field, type textView, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var textView: UITextView!

	 11.	 Move the mouse pointer over the slider, hold down the Control

key, and Ctrl-drag under the class ViewController line in the

ViewController.swift file.

	 12.	 Release the Control key and the left mouse button. A popup

window appears.

	 13.	 Click in the Name text field, type rateSlider, and click the Connect

button. Xcode creates an IBOutlet as follows:

@IBOutlet var rateSlider: UISlider!

	 14.	 Move the mouse pointer over the button, hold down the Control

key, and Ctrl-drag above the last curly bracket at the bottom of the

ViewController.swift file.

	 15.	 Release the Control key and the left mouse button. A popup

window appears.

	 16.	 Click in the Name text field, type readText, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a readText IBAction method.

	 17.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 18.	 Click the ViewController.swift file in the Navigator pane.

	 19.	 Under the import UIKit line, add the following to access the

speech synthesizer:

import AVFoundation

Chapter 18 Using Speech

489

	 20.	 Add the following under the IBOutlets to add an

AVSpeechSynthesizer class:

let audio = AVSpeechSynthesizer()

	 21.	 Add the following to use the AVSpeechUtterance class to read text

out loud:

var convertText = AVSpeechUtterance(string: "")

	 22.	 Edit the readText IBAction method as follows:

@IBAction func readText(_ sender: UIButton) {

 convertText = AVSpeechUtterance(string: textView.text)

 convertText.rate = rateSlider.value

 audio.speak(convertText)

}

This function first retrieves any text stored in the textView IBOutlet.

Then it retrieves the value defined by the slider, which varies from 0

to 1.0 to define the rate that the speech synthesizer will speak. A low

number makes the speech synthesizer speak slowly, while a higher

number makes the speech synthesizer speak faster. Finally the

speech synthesizer uses the rate and text to read the text out loud.

The entire ViewController.swift file should look like this:

import UIKit

import AVFoundation

class ViewController: UIViewController {

 @IBOutlet var textView: UITextView!

 @IBOutlet var rateSlider: UISlider!

 let audio = AVSpeechSynthesizer()

 var convertText = AVSpeechUtterance(string: "")

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

Chapter 18 Using Speech

490

 @IBAction func readText(_ sender: UIButton) {

 convertText = AVSpeechUtterance(string: textView.text)

 convertText.rate = rateSlider.value

 audio.speak(convertText)

 }

}

Note  You can run this app on either the Simulator program or on an actual iOS
device.

	 23.	 Click the Run button or choose Product ➤ Run. The Simulator

screen appears displaying your app’s user interface.

	 24.	 Click the Read Text Out Loud button. The app starts reading the

text stored in the text view.

	 25.	 Experiment with dragging the slider left or right to adjust the rate

of the speech synthesizer, and experiment with typing different

text in the text view.

	 26.	 Choose Simulator ➤ Quit Simulator to return back to Xcode.

�Summary
Adding speech recognition requires the Speech framework, while adding a

speech synthesizer to read text out loud requires the AVFoundation framework.

Speech recognition gives users another way to interact with your app, while the speech

synthesizer lets your app read short strings or even long amounts of text out loud. This

can be handy for people with visibility problems or to provide information to users if

they can’t look at the iPhone screen, such as when they’re driving.

By adding speech recognition and a speech synthesizer, your app can use audio as

another part of its user interface to allow users to give and receive data from your app.

Chapter 18 Using Speech

491
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_19

CHAPTER 19

Understanding SiriKit
In the previous chapter, you learned how to do simple speech recognition. However

since there are multiple ways to say the same thing, recognizing voice commands can be

difficult when commands get more complex than simple one-word options. To help your

app recognize more complicated voice commands, you can add the features of Siri to

your app through the SiriKit framework.

Siri essentially takes care of the difficult task of recognizing words and turning

them into commands. Then your app has the task of responding to voice commands

identified through Siri. Once your app identifies a user’s intent through recognized voice

commands, your app may need to ask additional questions to clarify the user’s intent.

Finally, your app can respond intelligently using Siri as its user interface. By using SiriKit,

your app can gain the power of Siri with little additional work on your part.

The main limitation is that SiriKit restricts your app to one of several domains that

define the user’s intent such as sending a message, making a call, browsing through

photos, sending money, or making an appointment with a ride-sharing service.

Note  To view a list of all possible Intent domains SiriKit can recognize, visit
https://developer.apple.com/documentation/sirikit.

Intent domains make it easier for Siri to understand what the user says. For example,

if you said, “Send 25 dollars to Fred” within a money payment app, Siri could correctly

identify the recipient (Fred) and the amount of money to send (25 dollars). At this

point, your app would need to do the actual work of sending money to Fred along with

verifying that Fred was a valid person and that your account had enough money to send

in the first place.

SiriKit works by recognizing speech, extracting possible actions within a limited

domain, asking the user for additional information if necessary, then converting that

spoken speech into text for your app to process.

https://developer.apple.com/documentation/sirikit

492

�How SiriKit Works
SiriKit works with an app through two types of files called extensions. An Intents App

extension contains Swift code to respond to the user’s voice commands after they’re

interpreted by Siri. An Intents UI App extension allows your app to customize the

appearance of data displayed within Siri. At the very least, every app that connects to

SiriKit needs an Intents App extension. An Intents UI App extension simply makes your

app look more professional but isn’t absolutely necessary.

To create a SiriKit app, follow these steps:

	 1.	 Create a new iOS Single View App project and name it SiriApp.

	 2.	 Choose File ➤ New ➤ Target. A template dialog appears.

	 3.	 Click the iOS category and click Intents Extension as shown in

Figure 19-1.

Figure 19-1.  Adding an Intents Extension file to a project

Chapter 19 Understanding SiriKit

493

	 4.	 Click the Next button. A window appears, asking for a product

name for the extension.

	 5.	 Click in the Product Name text field and type MessageExtension.

Make sure the Include UI Extension check box is selected.

	 6.	 Click the Finish button. When a dialog appears asking if

you want to activate the scheme, click the Activate button.

Xcode creates two new folders called MessageExtension and

MessageExtensionUI as shown in Figure 19-2.

The MessageExtension folder contains an IntentHandler.swift file.

This is where you write code to handle commands captured by Siri.

The MessageExtensionUI folder contains a MainInterface.

storyboard file along with an accompanying IntentViewController.

swift file. The Main.storyboard file appears within Siri to let users

know they’re interacting with your app through Siri. If you do not

customize this Main.storyboard file, your app will display a generic

dialog within Siri.

	 7.	 Connect an iOS device to your Macintosh through its USB cable.

Figure 19-2.  Xcode adds two new folders for your Intents Extension

Chapter 19 Understanding SiriKit

494

	 8.	 Click the Scheme popup menu in the upper left corner of the

Xcode window and choose your iOS device.

	 9.	 Click the Run button or choose Product ➤ Run. A dialog appears,

asking you to choose an app to run as shown in Figure 19-3.

	 10.	 Click Siri and then click the Run button. Siri waits for you to speak.

	 11.	 Say “Send a message using SiriApp.” The first time you run the

SiriApp project, Siri will ask for permission to use SiriApp as

shown in Figure 19-4.

Figure 19-3.  Choosing Siri to run in your app

Chapter 19 Understanding SiriKit

495

	 12.	 Tap the Yes button. Siri then asks where you want to send the

message as shown in Figure 19-5.

Figure 19-4.  Running the Speech2Text project on an iPhone

Chapter 19 Understanding SiriKit

496

This generic SiriApp dialog is what’s defined by the Main.storyboard

file under the MessageExtensionUI folder.

	 13.	 State a name stored in your Contacts app. Siri will then ask for the

message to send.

	 14.	 Recite any message you like. Notice that Siri may not always

understand the words you speak accurately. Siri will then ask for

confirmation to send it. Although Siri will say it sent the message,

nothing will actually be sent.

	 15.	 Click the Stop button in Xcode, or choose Product ➤ Stop.

Just with this short demo, you can see how SiriKit works by

integrating your app in Siri and allowing Siri to work as your app’s

user interface.

Figure 19-5.  Running the Speech2Text project on an iPhone

Chapter 19 Understanding SiriKit

497

Now let’s go back to Xcode and understand the details of your

SiriApp project and how it works.

�Defining How Siri Interacts with the User
In both the MessageExtension and MessageExtensionUI folder of your SiriApp

project, you’ll see an Info.plist file. Each of these files defines what Siri recognizes

and responds to. In each Info.plist file, click under the NSExtension heading, then the

NSExtensionAttributes, and finally under IntentsSupported. The Info.plist file under the

MessageExtension folder supports three intents as shown in Figure 19-6.

This means that Siri will let you send, search for, and modify the attributes of a

message such as whether it’s been marked as read or not.

If you were creating an app in a different domain such as making payments or

creating notes, you would need to change the IntentsSupported items to something

else such as INSendPaymentIntent or INCreateNoteIntent. The exact intent you’d add

depends on the Intent domain your app will handle and which intents your app will

support. By looking up a particular SiriKit domain, such as creating notes, you can see all

possible intents available as shown in Figure 19-7.

Figure 19-6.  The Info.plist contents under the MessageExtension folder

Chapter 19 Understanding SiriKit

498

Click the Info.plist file in the MessageExtensionUI folder. If you expand NSExtension,

NSExtensionAttributes, and IntentsSupported, you can see that the user interface of Siri

supports the INSendMessageIntent as shown in Figure 19-8.

Figure 19-7.  Apple’s documentation lists all possible intents for a particular
domain such as note creation

Chapter 19 Understanding SiriKit

499

In any app that works with SiriKit, make sure you modify the Info.plist files to

define the intents your app will support for a particular domain such as ride booking,

messaging, or photos.

One final Info.plist file you may need to modify is the one stored in your main

project’s folder. For example, if your app will work with SiriKit to allow searching of

photos stored in the Photos album, you’ll need to modify the Info.plist file to allow photo

library usage as shown in Figure 19-9.

Figure 19-8.  The Info.plist file in the MessageExtensionUI folder

Figure 19-9.  Adding privacy settings in the Info.plist of the main project

Chapter 19 Understanding SiriKit

500

Some common privacy settings you may need to modify include

•	 Calendar usage

•	 Contacts access

•	 Music library access

•	 Photo library access

•	 Reminders usage

�Understanding the IntentHandler.swift File
Once you have modified the Info.plist files for any privacy settings and to define the

intents your app will handle through Siri, the next step is to modify the IntentHandler.

swift file located in the Extension folder (not the ExtensionUI folder).

The IntentHandler.swift file imports the Intents framework, but you may need to

import additional frameworks. For example, if your app needs access to the Photos

library, you’ll need to import the Photos framework. If your app makes VoIP calls, you’ll

need to import the CallKit framework. Make sure you import the proper framework your

app needs.

After importing any additional frameworks, the next step is to make sure your

IntentHandler class adopts handling protocols for your chosen domain. In our SiriApp

project, our IntentHandler class adopts protocols for sending, searching, and modifying

messages as follows:

class IntentHandler: INExtension, INSendMessageIntentHandling,

INSearchForMessagesIntentHandling, INSetMessageAttributeIntentHandling {

If your app is not working in the messaging domain, delete the code in the

IntentHandler.swift file and adopt the IntentHandler class to different protocols such

as the INStartAudioCallIntentHandling protocol to work with VoIP calling or the

INStartWorkoutIntentHandling protocol. (SiriKit protocols typically end with the word

“Handling”.) The following code adopts protocols for the workout domain:

class IntentHandler: INStartWorkoutIntentHandling,

INPauseWorkoutIntentHandling, INResumeWorkoutIntentHandling,

INCancelWorkoutIntentHandling, INEndWorkoutIntentHandling {

Chapter 19 Understanding SiriKit

501

Regardless of the specific SiriKit protocols your IntentHandler class adopts, you’ll

need to create functions to conform to those protocols. In our SiriApp project, the

IntentHandler.swift file contains code for working with messaging. When working with

SiriKit with messaging or any other domain such as workouts or payments, users can

give commands in several ways. Ideally, users will give complete commands that identify

at least three items:

•	 The name of your app

•	 The recipient of your action

•	 The content of your action

If your app used Siri to work in the payment domain, users could give a command

like “Pay Fred ten dollars using SiriApp.” In this example, Fred is the recipient of the

action, ten dollars is the content of your action, and SiriApp is the name of the app the

user wants to use.

However, most times users will not give complete commands. Instead, they may

give a partial command like “Use SiriApp to pay Fred.” When Siri hears the name of the

app, it knows which app to use. Then it uses the person’s name (Fred) as the recipient,

assuming Fred is stored in your Contacts app and you have given the app permission to

access the Contacts app database.

However, Siri won’t know the amount, so at this point, it will need to ask an

additional question for the amount. When the user states the amount, then Siri can

complete the action. When Siri doesn’t have complete information, it needs to ask for

the missing information, which is called disambiguation.

Note A lthough the IntentHandler.swift file uses a switch statement to verify
names, it doesn’t contain any code to actually access or verify if a name is stored
in the Contacts app database or not.

In our SiriApp project, Siri needs to resolve two possible pieces of missing

information:

•	 Who the recipient is

•	 What the message may be

Chapter 19 Understanding SiriKit

502

In the IntentHandler.swift file of our SiriApp project, there are two functions to

handle these issues. The first function is called resolveRecipients. Notice there’s a

switch statement that deals with three cases. First, if the user gives a name that matches

multiple people. For example, if you want to send a message to Fred but you have a Fred

Johnson, Fred Murray, and Fred Billingsly in your contacts database, Siri will need to ask

the user which person in particular:

 case 2 ... Int.max:

 // We need Siri's help to ask user to pick one from the matches.

 �resolutionResults += [INSendMessageRecipientResolutionResult.

disambiguation(with: matchingContacts)]

If the user gives one name and that name matches exactly one person in the Contacts

app, then the app can perform the complete action:

 case 1:

 // We have exactly one matching contact

 �resolutionResults += [INSendMessageRecipientResolutionResult.

success(with: recipient)]

Of course, the user may give a name that isn’t in the contacts database. In that case,

the code will need to let Siri know that the task cannot be completed. This means Siri will

need to inform the user of this and ask for a new name:

 case 0:

 // We have no contacts matching the description provided

 �resolutionResults += [INSendMessageRecipientResolutionResult.

unsupported()]

The IntentHandler.swift file contains another function called resolveContent. This

function checks if the user specifies a message to send. For example, the user could

say, “Send a message with SiriApp to Fred.” This identifies the app to use (our SiriApp

project) and the recipient (Fred). But since the user didn’t specify a message, Siri will

need to resolve this by asking for a message. That’s the purpose of the resolveContent

function:

 �func resolveContent(for intent: INSendMessageIntent, with completion:

@escaping (INStringResolutionResult) -> Void) {

 if let text = intent.content, !text.isEmpty {

Chapter 19 Understanding SiriKit

503

 completion(INStringResolutionResult.success(with: text))

 } else {

 completion(INStringResolutionResult.needsValue())

 }

 }

Once Siri has a valid recipient and message to send, it uses a confirm function to ask

the user to verify everything is ready.

Note  The template code in the IntentHandler.swift file does not actually send
out messages even though Siri will claim that it has sent the message. To actually
send a message, you’ll need to write additional code.

 �func confirm(intent: INSendMessageIntent, completion: @escaping

(INSendMessageIntentResponse) -> Void) {

 �// Verify user is authenticated and your app is ready to send a

message.

 �let userActivity = NSUserActivity(activityType: NSStringFromClass

(INSendMessageIntent.self))

 �let response = INSendMessageIntentResponse(code: .ready,

userActivity: userActivity)

 completion(response)

 }

Finally, the handle function actually takes action after Siri has gotten the recipient’s

name and message from the user. The handle function in the IntentHandler.swift file

looks like this:

 �func handle(intent: INSendMessageIntent, completion: @escaping

(INSendMessageIntentResponse) -> Void) {

 // Implement your application logic to send a message here.

 �let userActivity = NSUserActivity(activityType: NSStringFromClass

(INSendMessageIntent.self))

Chapter 19 Understanding SiriKit

504

 �let response = INSendMessageIntentResponse(code: .success,

userActivity: userActivity)

 completion(response)

 }

Note that all of these functions include the keyword INSendMessageIntent or

INSendMessageIntentResponse. If you look at the bottom of the IntentHandler.swift file,

there are two handle functions, but one is designed to deal with searching for messages

(INSearchForMessageIntent) and the second is designed to deal with changing

attributes of a message (INSetMessageAttributeIntent).

�Understanding the ExtensionUI Folder
The IntentHandler.swift file in the Extension folder contains code to link your app to Siri.

To customize the appearance of your app within Siri, you have the option of customizing

a storyboard file that appears within Siri. The purpose of this storyboard file is to display

information to the user within Siri. By default, your app will display a generic user

interface inside Siri, but you can display a custom user interface by modifying the two

files inside the ExtensionUI folder.

The IntentViewController.swift file contains Swift code for customizing your app’s

user interface within Siri. The MainInterface.storyboard file defines the actual user

interface as shown in Figure 19-10.

Chapter 19 Understanding SiriKit

505

If you want to define a custom user interface that appears inside Siri, you’ll need to

write Swift code in the IntentViewController.swift file and add user interface items onto

the MainInterface.storyboard file such as a UILabel or UITextView. Then you’ll need to

create IBOutlets between the .storyboard file and the IntentViewController.swift file.

To see how to customize the Siri user interface for your app, follow these steps:

	 1.	 Make sure the SiriApp project is loaded in Xcode.

	 2.	 Click the IntentViewController.swift file in the

MessageExtensionUI folder.

	 3.	 Make the IntentViewController class adopt the

INUIHostedViewsSiriProviding protocol by modifying it as

follows:

class IntentViewController: UIViewController,

INUIHostedViewControlling, INUIHostedViewSiriProviding {

Figure 19-10.  The MainInterface.storyboard file defines your app’s user interface
in Siri

Chapter 19 Understanding SiriKit

506

Next, we’ll need to set one of three variables to true:

•	 displaysMap – Used to replace a default Map interface if your app

relies on Maps app such as ride booking

•	 displaysMessage – Used to display a custom interface if your app

works with messages

•	 displaysPaymentTransaction – Used to display a custom interface

if your app works with payments

	 4.	 Since our SiriApp project works with messages, we need to use the

displaysMessage variable and set it to true, so add the following

above the viewDidLoad method:

var displaysMessage: Bool {

 return true

}

The final step is to modify the configure function to display your

.storyboard file within Siri. Remember, each time Siri asks a

question to the user, it will display your .storyboard file so you

need to define what type of information to display in the user

interface each time Siri asks a question.

	 5.	 To see how to display a custom user interface within Siri, click the

MainInterface.storyboard file in the MessageExtensionUI folder

and click the Library icon.

	 6.	 Drag and drop a label onto the view. Center it and expand its

width so it looks like Figure 19-11.

Figure 19-11.  Placing a label on the MainInterface.storyboard file

Chapter 19 Understanding SiriKit

507

	 7.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the MainInterface.storyboard and

IntentViewController.swift file side by side.

	 8.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag above the var displaysMessage line.

	 9.	 Release the Control key and the left mouse button. A popup

window appears.

	 10.	 Click in the Name text field, type messageLabel, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var messageLabel: UILabel!

	 11.	 Modify the configureView function as follows:

�func configureView(for parameters: Set<INParameter>,

of interaction: INInteraction, interactiveBehavior:

INUIInteractiveBehavior, context: INUIHostedViewContext,

completion: @escaping (Bool, Set<INParameter>, CGSize) -> Void) {

 �if let messageIntent = interaction.intent as?

INSendMessageIntent {

 guard messageIntent.content != nil else {

 return completion(true, parameters, CGSize.zero)

 }

 �messageLabel.text = "Your message = \(messageIntent.

content ?? "")"

 }

 completion(true, parameters, self.desiredSize)

}

Essentially this function checks if the user has added content to a

message. If not, then display the MainInterface.storyboard file as

size zero, which effectively hides it from view.

Chapter 19 Understanding SiriKit

508

	 12.	 Connect an iOS device to your Macintosh through its USB cable.

	 13.	 Click the Scheme popup menu in the upper left corner of the

Xcode window and choose your iOS device.

	 14.	 Click the Run button or choose Product ➤ Run. A dialog appears,

asking you to choose an app to run (see Figure 19-3).

	 15.	 Click Siri and then click the Run button. Siri waits for you to speak.

	 16.	 Say “Send a message using SiriApp.”

	 17.	 State a name stored in your Contacts app. Siri will then ask for the

message to send.

	 18.	 Recite any message you like such as Hello there. The

MainInterface.storyboard file appears as shown in Figure 19-12.

Figure 19-12.  The MainInterface.storyboard appears within Siri

Chapter 19 Understanding SiriKit

509

	 19.	 Click the Stop button in Xcode, or choose Product ➤ Stop.

The entire contents of the IntentViewController.swift file should

look like this:

import IntentsUI

class IntentViewController: UIViewController,

INUIHostedViewControlling, INUIHostedViewSiriProviding {

 @IBOutlet var messageLabel: UILabel!

 var displaysMessage: Bool {

 return true

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 // MARK: - INUIHostedViewControlling

 // Prepare your view controller for the interaction to handle.

 �func configureView(for parameters: Set<INParameter>,

of interaction: INInteraction, interactiveBehavior:

INUIInteractiveBehavior, context: INUIHostedViewContext,

completion: @escaping (Bool, Set<INParameter>, CGSize) -> Void) {

 �if let messageIntent = interaction.intent as?

INSendMessageIntent {

 guard messageIntent.content != nil else {

 return completion(true, parameters, CGSize.zero)

 }

 �messageLabel.text = "Your message = \(messageIntent.

content ?? "")"

 }

 completion(true, parameters, self.desiredSize)

 }

Chapter 19 Understanding SiriKit

510

 var desiredSize: CGSize {

 return self.extensionContext!.hostedViewMaximumAllowedSize

 }

}

�Creating a Payment App with Siri
In our SiriApp project, we simply used code created by Xcode to send a message. In this

project, we’re going to create a simple payment app that works with Siri so you can see

the differences between this project and the previous SiriApp project along with seeing

what you need to modify when working with an app outside of the messaging domain.

	 1.	 Create a new iOS Single View App project and name it CatPay.

	 2.	 Choose file ➤New ➤ Target. A template dialog appears.

	 3.	 Click the iOS category and click Intents Extension (see Figure 19-1).

	 4.	 Click the Next button. A window appears, asking for a product

name for the extension.

	 5.	 Click in the Product Name text field and type PayExtension. Make

sure the Include UI Extension check box is selected.

	 6.	 Click the Finish button. When a dialog appears asking if you want

to activate the scheme, click the Activate button. Xcode creates two

new folders called PayExtension (containing the IntentHandler.swift

file) and PayExtensionUI (containing the IntentViewController.swift

file and the MainInterface.storyboard file).

For our simple payment app, we’re only going to allow sending

a payment, so we need to modify the Info.plist file in both the

PayExtension and PayExtensionUI folders. You’ll need to expand

NSExtension, NSExtensionAttributes, and IntentsSupported. By

default, the items in the Info.plist file will contain message sending

intents such as INSendMessageIntent, but our app will be sending

payments instead.

	 7.	 Click the Info.plist file in the PayExtension folder and expand

IntentsSupported.

Chapter 19 Understanding SiriKit

511

	 8.	 Move the mouse pointer over Item 0 so a + and – icon appears.

	 9.	 Click the – icon to delete Item 0.

	 10.	 Repeat steps 8 and 9 to delete the next Item 0. Xcode displays a

single Item 0.

	 11.	 Click in the Value column of Item 0 and type

INSendPaymentIntent as shown in Figure 19-13.

	 12.	 Click the Info.plist in the PayExtensionUI folder.

	 13.	 Expand IntentsSupported and change the value to

INSendPaymentIntent.

	 14.	 Click the IntentHandler.swift file in the PayExtension folder.

	 15.	 Modify the class declaration at the top of the file to focus on

INSendPaymentIntentHandling instead of messages like this:

class IntentHandler: INExtension, INSendPaymentIntentHandling {

	 16.	 Edit the handle function to deal with the INSendPaymentIntent

like this:

�func handle(intent: INSendPaymentIntent, completion: @escaping

(INSendPaymentIntentResponse) -> Void) {

 �let userActivity = NSUserActivity(activityType:

NSStringFromClass(INSendMessageIntent.self))

 �completion(INSendPaymentIntentResponse(code: .success,

userActivity: userActivity))

}

Figure 19-13.  Modifying the Info.plist file to support INSendPaymentIntent

Chapter 19 Understanding SiriKit

512

	 17.	 Just as you need to modify the handle function to work with

INSendPaymentIntent (instead of INSendMessageIntent), so

you need to also modify the confirm function to deal with the

INSendPaymentIntent like this:

�func confirm(intent: INSendPaymentIntent, completion:

@escaping (INSendPaymentIntentResponse) -> Void) {

 �let userActivity = NSUserActivity(activityType:

NSStringFromClass(INSendPaymentIntent.self))

 �let response = INSendPaymentIntentResponse(code: .ready,

userActivity: userActivity)

 completion(response)

}

The entire IntentHandler.swift file should look like this:

import Intents

class IntentHandler: INExtension, INSendPaymentIntentHandling {

 override func handler(for intent: INIntent) -> Any {

 �// This is the default implementation. If you want

different objects to handle different intents,

 �// you can override this and return the handler you want

for that particular intent.

 return self

 }

 �func handle(intent: INSendPaymentIntent, completion: @escaping

(INSendPaymentIntentResponse) -> Void) {

 �let userActivity = NSUserActivity(activityType:

NSStringFromClass(INSendMessageIntent.self))

 �completion(INSendPaymentIntentResponse(code: .success,

userActivity: userActivity))

 }

Chapter 19 Understanding SiriKit

513

 �func confirm(intent: INSendPaymentIntent, completion:

@escaping (INSendPaymentIntentResponse) -> Void) {

 �let userActivity = NSUserActivity(activityType:

NSStringFromClass(INSendPaymentIntent.self))

 �let response = INSendPaymentIntentResponse(code: .ready,

userActivity: userActivity)

 completion(response)

 }

}

Now it’s time to create a custom user interface for appearing

within Siri.

	 18.	 Click the MainInterface.storyboard in the PayExtensionUI folder.

	 19.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or

click the Assistant Editor icon in the upper right corner of the

Xcode window. Xcode displays the MainInterface.storyboard and

IntentViewController.swift file side by side.

	 20.	 Click the Library icon and drag and drop a label. You may want to

resize the label to make it wider.

	 21.	 Move the mouse pointer over the label, hold down the Control

key, and Ctrl-drag above the var displaysMessage line.

	 22.	 Release the Control key and the left mouse button. A popup

window appears.

	 23.	 Click in the Name text field, type contentLabel, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var contentLabel: UILabel!

	 24.	 Choose View ➤ Standard Editor ➤ Show Standard Editor, or click

the Standard Editor icon in the upper right corner of the Xcode

window.

	 25.	 Click the IntentViewController.swift file in the PayExtensionUI

folder.

Chapter 19 Understanding SiriKit

514

	 26.	 Modify the IntentViewController.swift file to make it adopt the

INUIHostedViewSiriProviding protocol like this:

class IntentViewController: UIViewController,

INUIHostedViewControlling, INUIHostedViewSiriProviding {

	 27.	 Add the following displaysPaymentTransaction variable below the

IBOutlet like this:

var displaysPaymentTransaction: Bool {

 return true

}

	 28.	 Modify the configureView function so it displays the

MainInterface.storyboard within Siri like this:

�func configureView(for parameters: Set<INParameter>,

of interaction: INInteraction, interactiveBehavior:

INUIInteractiveBehavior, context: INUIHostedViewContext,

completion: @escaping (Bool, Set<INParameter>, CGSize) -> Void) {

 �if let paymentIntent = interaction.intent as?

INSendPaymentIntent {

 �guard let amount = paymentIntent.currencyAmount?.amount

else {

 return completion(true, parameters, CGSize.zero)

 }

 �let paymentDescription = "Sending \(amount)

\(paymentIntent.currencyAmount?.currencyCode ?? "dollars")

worth of cats"

 contentLabel.text = paymentDescription

 }

 completion(true, parameters, self.desiredSize)

}

The guard statement checks if the user specified an amount for

payment. If not, then the user interface size is set to zero, which

makes the default user interface appear instead.

Chapter 19 Understanding SiriKit

515

If the user has specified an amount, then it displays a string in the

UILabel defined by the IBOutlet called contentLabel. Notice that

currencyCode represents the currency used in your region, but

you need to specify a default value (in this case “dollars”) in case

your app can’t define the region’s currency code.

The complete IntentViewController.swift file should look like this:

import IntentsUI

class IntentViewController: UIViewController,

INUIHostedViewControlling, INUIHostedViewSiriProviding {

 @IBOutlet var contentLabel: UILabel!

 var displaysPaymentTransaction: Bool {

 return true

 }

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 }

 �func configureView(for parameters: Set<INParameter>,

of interaction: INInteraction, interactiveBehavior:

INUIInteractiveBehavior, context: INUIHostedViewContext,

completion: @escaping (Bool, Set<INParameter>, CGSize) ->

Void) {

 �if let paymentIntent = interaction.intent as?

INSendPaymentIntent {

 �guard let amount = paymentIntent.currencyAmount?.

amount else {

 return completion(true, parameters, CGSize.zero)

 }

 �let paymentDescription = "Sending \(amount)

\(paymentIntent.currencyAmount?.currencyCode ??

"dollars") worth of cats"

Chapter 19 Understanding SiriKit

516

 contentLabel.text = paymentDescription

 }

 completion(true, parameters, self.desiredSize)

 }

 var desiredSize: CGSize {

 return self.extensionContext!.hostedViewMaximumAllowedSize

 }

}

	 29.	 Connect an iOS device to your Macintosh through its USB cable.

	 30.	 Click the Scheme popup menu in the upper left corner of the

Xcode window and choose your iOS device.

	 31.	 Click the Run button or choose Product ➤ Run. A dialog appears,

asking you to choose an app to run (see Figure 19-3).

	 32.	 Click Siri and then click the Run button. Siri waits for you to speak.

	 33.	 Say “Send twenty-five dollars using CatPay.” The first time you

run the CatPay project, Siri will ask for permission to use CatPay.

After you give Siri permission, Siri displays the MainInterface.

storyboard user interface as shown in Figure 19-14.

Chapter 19 Understanding SiriKit

517

	 34.	 When Siri asks if you want to send the payment, say “Send” and

Siri will say it sent payment (although it really doesn’t because you

haven’t written any code to define who to send the money to or

how to withdraw funds from an account).

	 35.	 Click the Stop button in Xcode or choose Product ➤ Stop.

Although you customized the MainInterface.storyboard with a

label, you could easily add pictures or text that represents your

app’s logo. That way users can recognize your app within Siri.

Figure 19-14.  The MainInterface.storyboard appears within Siri

Chapter 19 Understanding SiriKit

518

�Summary
SiriKit gives your apps the ability to connect to Siri so users can interact with your app

using voice commands. Just remember that SiriKit can only handle a limited range of

domains such as messaging, ride booking, VoIP calling, or payments.

When you create a target file for your project, Xcode creates template code for

working with the messaging domain to send messages. You’ll need to delete most of this

code in the IntentHandler.swift file to customize it for a different domain such as photos

or workouts.

Make sure you edit the Info.plist files in the Extension and ExtensionUI folders to

define the specific domain intents your app will handle such as INSendPaymentIntent or

INSendMessageIntent.

To customize your user interface within Siri, you’ll need to modify the MainInterface.

storyboard file and the IntentViewController.swift file.

By adding SiriKit to your app, you can make your app easier to use through the

natural language processing capabilities of Siri.

Chapter 19 Understanding SiriKit

519
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_20

CHAPTER 20

Understanding ARKit
One of the most popular mobile games in recent years was Pokemon Go, which

displayed Pokemon characters overlaid over actual places when viewed through the

iPhone camera. By aiming your iPhone camera at a park bench or a bush, you could see

a Pokemon cartoon character as if it were really there.

This technology of displaying virtual objects over actual physical objects is known as

augmented reality (AR). The idea behind augmented reality is to let you combine real-

world objects with virtual objects that appear on your iPhone screen.

One use for augmented reality is to point your iPhone at a street so you can see

street names and names of businesses in the surrounding area. Another use is to show

you walking directions complete with arrows to show you how to navigate around large

public places such as airport terminals or museums.

In the past, creating augmented reality apps required writing mathematic equations

to track real-world objects and position virtual objects in the real world. Fortunately,

Apple has made augmented reality much easier to create through a new software

framework called ARKit. By using ARKit along with other frameworks such as SceneKit,

you can create augmented reality apps quickly and easily.

Note  You can only test and run ARKit apps on an iPhone 6s or higher, an iPad Pro,
or the latest iPad models.

�How ARKit Works
At the simplest level, ARKit works by identifying surrounding areas called feature points.

Once ARKit understands the physical objects viewed by an iOS device camera, it can

then overlay a virtual object on top of the real image displayed by the camera.

520

To see an example of ARKit in action, follow these steps:

	 1.	 Choose File ➤ New ➤ Project. Xcode displays a template dialog as

shown in Figure 20-1.

Figure 20-1.  The Augmented Reality App template

	 2.	 Click the iOS category and click the Augmented Reality App icon.

Then click the Next button and Create button. Another dialog

appears.

	 3.	 Click in the Product Name text field and type ARTestApp. Make

sure the Content Technology popup menu displays SceneKit.

(The other two options in the Content Technology popup menu

are Metal and SpriteKit. SpriteKit is designed for 2D images, while

Metal is designed for advanced users who prefer to create their

own code to create graphics. In most cases, you’ll want to use

SceneKit to display 3D images.)

Chapter 20 Understanding ARKit

521

	 4.	 Click the ViewController.swift file and you’ll see code already

written for you to create an augmented reality app. Notice that the

ViewController.swift file contains three import statements:

import UIKit

import SceneKit

import ARKit

UIKit creates an iOS app. SceneKit lets you display three-

dimensional objects. ARKit lets you add augmented reality to

your app.

	 5.	 Next, notice that the ViewController class adopts the

ARSCNViewDelegate:

class ViewController: UIViewController, ARSCNViewDelegate {

This protocol lets you display SceneKit images as augmented

reality objects overlaid over real-world objects.

	 6.	 Next, notice that the ViewController.swift file already contains a

single IBOutlet named sceneView:

@IBOutlet var sceneView: ARSCNView!

	 7.	 Click the Main.storyboard file in the Navigator pane. Notice that

an ARKit SceneKit View already appears on the user interface

as shown in Figure 20-2. This ARSCNView displays 3D SceneKit

images on a camera background.

Chapter 20 Understanding ARKit

522

Figure 20-2.  An ARKit SceneKit View already appears on the user interface

	 8.	 Click the ViewController.swift file in the Navigator pane. Look in the

viewWillAppear function and you’ll see two lines of code that help create

augmented reality in the app. The first line creates a constant called

configuration, which represents an ARWorldTrackingConfiguration

object. This object tracks an iOS device’s orientation and position as well

as detecting real-world surfaces.

Chapter 20 Understanding ARKit

523

let configuration = ARWorldTrackingConfiguration()

The second line actually displays the augmented reality image

overlaid on the view displayed by the camera:

sceneView.session.run(configuration)

	 9.	 Look in the viewDidLoad function of the ViewController.swift file.

First, there’s a line that defines the ViewController.swift file as its

delegate. Second, there’s a line that displays frames per second

(fps) and timing data at the bottom of the screen:

sceneView.showsStatistics = true

	 10.	 Look in the Navigator pane for an art.scnassets folder. If you

expand this folder, you’ll see that it contains two files: ship.scn and

texture.png.

	 11.	 Click the ship.scn file, which contains a three-dimensional object

as shown in Figure 20-3.

Figure 20-3.  Viewing the ship.scn file in Xcode

Chapter 20 Understanding ARKit

524

Note  A .scn file stands for a SceneKit file format. Most 3D digital imaging
programs can save files in a .dae (Digital Asset Exchange) file format. If you add a
.dae file to Xcode, you can convert it to a .scn file format by adding the .dae file to
the Navigator pane and then choosing File ➤ Export and save the file as a .scn file.
If you want to create .dae files, you can use the free, open source Blender program
(www.blender.org). You can also find free, public domain .dae files on the Internet.

Virtual objects consist of a shape (in this case, the ship.scn file)

and a texture (texture.png) that gets applied on the shape. If you

click the texture.png file, you’ll see the color and graphics that

appears on the ship.scn file.

	 12.	 Click the texture.png in the Navigator pane. The texture appears as

shown in Figure 20-4.

	 13.	 Connect an iOS device to your Macintosh through a USB cable.

Figure 20-4.  The appearance of the texture.png file

Chapter 20 Understanding ARKit

http://www.blender.org

525

	 14.	 Make sure the Scheme menu in the upper left corner of the Xcode

window displays your iOS device.

	 15.	 Click the Run button or choose Product ➤ Run. Point your iOS

device camera anywhere. The virtual image of the ship.scn file

should now appear over the real-world objects viewed by the

camera as shown in Figure 20-5.

Figure 20-5.  Running the ARTestApp project in an iPhone

	 16.	 Move your iOS device around to see different angles of the ship.

scn image as if it were a real object in front of you. Also note that

the bottom of the screen displays statistics about the augmented

reality image such as its frames per second (fps).

Chapter 20 Understanding ARKit

526

	 17.	 Choose Product ➤ Stop or click the Stop icon. At this point, you’ve

seen a simple demonstration of how augmented reality works. By

adding different texture files or replacing the ship.scn file with a

different image, you can display custom images as seen through

the iOS device camera.

	 18.	 Edit the ViewController.swift file by commenting out the two lines

that define the ship.scn file and then load that scene:

//let scene = SCNScene(named: "art.scnassets/ship.scn")!

//sceneView.scene = scene

	 19.	 Add the following line after the commented out code. This line

displays feature points and the world origin overlaid over the

camera image:

sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

Feature points appear as yellow dots that highlight surface areas

that ARKit recognizes. The world origin appears where your iOS

device appears when the app first run. The world origin displays x,

y, and z axes where the x axis goes right, the y axis goes up, and the

z axis points out of the screen toward the user.

Note  ARKit works best in clear lighting conditions with multiple objects visible so
it can detect surface areas of tables, floors, and walls. Poor lighting conditions will
hinder ARKit’s ability to identify surface areas along with pointing the camera at a
blank wall or floor.

The entire viewDidLoad function should look like this:

override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

Chapter 20 Understanding ARKit

527

 // Create a new scene

 //let scene = SCNScene(named: "art.scnassets/ship.scn")!

 // Set the scene to the view

 //sceneView.scene = scene

 �sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

}

	 20.	 Make sure an iOS device is connected to your Macintosh through

a USB cable. Then click the Run button or choose Product ➤ Run.

The world origin appears along with yellow dots on nearby areas

that represent feature points as shown in Figure 20-6.

	 21.	 Click the Stop button in Xcode or choose Product ➤ Stop.

Figure 20-6.  The debugOptions line displays the origin and feature points

Chapter 20 Understanding ARKit

528

�Drawing Augmented Reality Objects
By replacing the ship.scn file with your own images, you can display anything you want

as an augmented reality object. However, you can also display simple geometric shapes.

Some of the available shapes you can draw include

•	 SCNBox – Draws a box

•	 SCNCapsule – Draws a cylinder whose ends are capped with

hemispheres

•	 SCNCone – Draws a cone

•	 SCNCylinder – Draws a cylinder

•	 SCNFloor – Draws an infinite plane that can optionally reflect a scene

•	 SCNPlane – Draws a rectangular plane of a specific width and height

•	 SCNPyramid – Draws a pyramid

•	 SCNSphere – Draws a sphere

•	 SCNTorus – Draws a torus, ring-shaped object

•	 SCNTube – Draws a cylinder with a hole along its central axis

When displaying geometric shapes, you need to define three features:

•	 The object’s physical dimensions such as its height and width

•	 The object’s appearance such as its color

•	 The object’s position relative to the world origin

Once you define an object’s size, appearance, and position, you need to place it on

the view displayed by the camera. To do this, you need to define a node. To see how to

define a node, follow these steps:

	 1.	 Make sure the ARTestApp project is loaded in Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

Chapter 20 Understanding ARKit

529

	 3.	 Underneath the sceneView.debugOptions line, in the

viewDidLoad method, add the following:

 let node = SCNNode()

 node.geometry = SCNPyramid(width: 0.1, height: 0.2, length: 0.1)

 node.geometry?.firstMaterial?.diffuse.contents = UIColor.cyan

 node.position = SCNVector3(0, -0.2, 0)

 sceneView.scene.rootNode.addChildNode(node)

This first line creates a node, which defines where a geometric

shape will appear.

The second line defines a SCNPyramid with a width, height, and

length.

The third line defines the color of the shape, which is cyan.

The fourth line defines the pyramid’s position relative to the world

origin. In this case, the base of the pyramid appears below the

origin at –0.2.

The fifth line adds the node to the scene so a cyan pyramid

appears directly under the world origin.

The entire viewDidLoad method should look like this:

override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

 // Create a new scene

 //let scene = SCNScene(named: "art.scnassets/ship.scn")!

 // Set the scene to the view

 //sceneView.scene = scene

 �sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

Chapter 20 Understanding ARKit

530

 let node = SCNNode()

 �node.geometry = SCNPyramid(width: 0.1, height: 0.2,

length: 0.1)

 �node.geometry?.firstMaterial?.diffuse.contents = UIColor.cyan

 node.position = SCNVector3(0, -0.2, 0)

 sceneView.scene.rootNode.addChildNode(node)

}

	 4.	 Make sure an iOS device is connected to your Macintosh through a

USB cable and make sure the Scheme popup menu at the upper left

corner of the Xcode window displays your connected iOS device.

	 5.	 Click the Run button or choose Product ➤ Run. A pyramid

appears under the world origin as shown in Figure 20-7.

Figure 20-7.  Displaying a pyramid as an augmented reality object

Chapter 20 Understanding ARKit

531

	 6.	 Click the Stop button in Xcode or choose Product ➤ Stop.

Experiment by changing the values for the node.position along

with the pyramid’s width, height, and length. Also change the

color of the pyramid from cyan to red or yellow. Rather than

display a pyramid, choose a different shape such as a SCNBox,

SCNTub, or SCNCone.

�Resetting the World Origin
We created the ARTestApp project using the Augmented Reality App template, but we

can easily give augmented reality capabilities to any project just by adding the ARKit and

SceneKit frameworks. When you first run the ARTestApp project, it will define the world

origin at the current location of your iPhone or iPad. If you take a few steps back, you’ll

see the origin displayed on the screen (see Figure 20-6). Unfortunately, the world origin

will remain fixed until you run the app again.

To fix this problem, the next project you’ll create will show a Reset button that will

let you move your iPhone/iPad to a new location and redefine the origin at your new

location. In this way, you can redefine the world origin position without having to restart

the app.

To see how to create an augmented reality app from the Single View App template,

follow these steps:

	 1.	 Create a new iOS Single View App project and name it

ARResetApp.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Under the import UIKit line, add the following lines to add the

SceneKit and ARKit frameworks like this:

import SceneKit

import ARKit

Chapter 20 Understanding ARKit

532

	 4.	 Modify the class ViewController line to adopt the

ARSCNViewDelegate like this:

class ViewController: UIViewController, ARSCNViewDelegate {

	 5.	 Click the Info.plist file and add a Privacy – Camera Usage

Description key. If you fail to do this, your app won’t have access

to the camera and won’t be able to run.

	 6.	 Click the Main.storyboard file in the Navigator pane.

	 7.	 Click the Library icon and drag and drop a button onto the bottom

of the user interface.

	 8.	 Resize the button so it spans the width of the screen.

	 9.	 Double-click the button, type Reset, and press Enter.

	 10.	 Click the Library icon and drag and drop an ARKit SceneKit View

on the user interface.

	 11.	 Resize the ARKit SceneKit View so the user interface looks like

Figure 20-8.

Chapter 20 Understanding ARKit

533

	 12.	 Choose Editor ➤ Resolve Auto Layout Issues ➤ Reset to Suggested

Constraints on the bottom half of the submenu. Xcode adds

constraints to the button and ARKit SceneKit View.

	 13.	 Choose View ➤ Assistant Editor ➤ Show Assistant Editor, or click

the Assistant Editor icon in the upper right corner of the Xcode

window. Xcode shows the Main.storyboard and ViewController.

swift file side by side.

Figure 20-8.  The ARKit SceneKit View displays augmented reality objects

Chapter 20 Understanding ARKit

534

	 14.	 Move the mouse pointer over the ARSCNView, hold down the

Control key, and Ctrl-drag under the class ViewController line in

the ViewController.swift file.

	 15.	 Release the Control key and the left mouse button. A popup

window appears.

	 16.	 Click in the Name text field, type sceneView, and click the

Connect button. Xcode creates an IBOutlet as follows:

@IBOutlet var sceneView: ARSCNView!

	 17.	 Add the following underneath the IBOutlet:

let configuration = ARWorldTrackingConfiguration()

	 18.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 sceneView.delegate = self

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

}

	 19.	 Add the following viewWillAppear and viewWillDisappear

functions:

override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Run the view's session

 sceneView.session.run(configuration)

}

Chapter 20 Understanding ARKit

535

override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 // Pause the view's session

 sceneView.session.pause()

}

	 20.	 Move the mouse pointer over the button, hold down the

Control key, and Ctrl-drag above the last curly bracket in the

ViewController.swift file.

	 21.	 Release the Control key and the left mouse button. A popup

window appears.

	 22.	 Click in the Name text field, type resetAR, click the Type popup

menu and choose UIButton, and click the Connect button. Xcode

creates a resetAR IBAction method.

	 23.	 Edit this IBAction method as follows:

@IBAction func resetAR(_ sender: UIButton) {

 sceneView.session.pause()

 �sceneView.session.run(configuration, options: [.resetTracking,

.removeExistingAnchors])

}

The entire ViewController.swift should look like this:

import UIKit

import SceneKit

import ARKit

class ViewController: UIViewController, ARSCNViewDelegate {

 @IBOutlet var sceneView: ARSCNView!

 let configuration = ARWorldTrackingConfiguration()

 override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 sceneView.delegate = self

Chapter 20 Understanding ARKit

536

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.

showWorldOrigin, ARSCNDebugOptions.showFeaturePoints]

 }

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Run the view's session

 sceneView.session.run(configuration)

 }

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 // Pause the view's session

 sceneView.session.pause()

 }

 @IBAction func resetAR(_ sender: UIButton) {

 sceneView.session.pause()

 �sceneView.session.run(configuration, options:

[.resetTracking, .removeExistingAnchors])

 }

}

	 24.	 Make sure an iOS device is connected to your Macintosh through

a USB cable and make sure the Scheme popup menu at the upper

left corner of the Xcode window displays your connected iOS

device.

	 25.	 Click the Run button or choose Product ➤ Run. Step back to see

the world origin (see Figure 20-6).

	 26.	 Aim the iOS device’s camera in a different direction and tap the

Reset button and step backward. You should now see the world

origin defined in your new location and direction.

	 27.	 Click the Stop button in Xcode or choose Product ➤ Stop.

Chapter 20 Understanding ARKit

537

�Drawing Custom Shapes
ARKit offers common geometric shapes you can create such as cylinders, cones,

pyramids, boxes, and spheres. If none of those geometric shapes meet your needs, you

can draw your own by defining a starting point and then adding lines to create a shape.

Drawing lines to define a shape creates what’s called a Bezier path.

The four main steps to creating a Bezier path include

•	 Defining a Bezier path

•	 Defining a starting point for drawing

•	 Drawing one or more lines

•	 Defining a SCNShape based on the Bezier path lines you’ve defined

To create a Bezier path, you need to define a BezierPath object like this:

 let path = UIBezierPath()

Once you’ve created a Bezier path, you need to define its starting point like this:

 path.move(to: CGPoint(x: 0, y: 0))

Now we need to draw one or more lines using the addLine method that defines the

ending point of that line like this:

 path.addLine(to: CGPoint(x: 0.2, y: 0.2))

Finally, we need to turn that Bezier path into a shape:

 let shape = SCNShape(path: path, extrusionDepth: 0.1)

Once we have a shape, we can display it as an augmented reality object by defining it

as a node with a color and position. Then we can finally add that node to the augmented

reality view:

 let node = SCNNode()

 node.geometry = shape

 node.geometry?.firstMaterial?.diffuse.contents = UIColor.yellow

 node.position = SCNVector3(0,0, -0.4)

 sceneView.scene.rootNode.addChildNode(node)

Chapter 20 Understanding ARKit

538

To see how to create an augmented reality app from the Single View App template,

follow these steps:

	 1.	 Make sure the ARResetApp project is loaded in Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Do any additional setup after loading the view.

 sceneView.delegate = self

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

 let path = UIBezierPath()

 path.move(to: CGPoint(x: 0, y: 0))

 path.addLine(to: CGPoint(x: 0.2, y: 0.2))

 path.addLine(to: CGPoint(x: 0.4, y: -0.2))

 let shape = SCNShape(path: path, extrusionDepth: 0.1)

 let node = SCNNode()

 node.geometry = shape

 �node.geometry?.firstMaterial?.diffuse.contents = UIColor.

yellow

 node.position = SCNVector3(0,0, -0.4)

 sceneView.scene.rootNode.addChildNode(node)

}

	 4.	 Make sure an iOS device is connected to your Macintosh through

a USB cable and make sure the Scheme popup menu at the upper

left corner of the Xcode window displays your connected iOS

device.

	 5.	 Click the Run button or choose Product ➤ Run. A yellow

triangular shape appears past the world origin as shown in

Figure 20-9.

Chapter 20 Understanding ARKit

539

	 6.	 Click the Stop button in Xcode or choose Product ➤ Stop.

Experiment with different colors and values for drawing a custom shape.

�Modifying the Appearance of Shapes
Up until now, we’ve just created a shape and applied a color to it, but there are other

ways to modify the appearance of a shape. Some ways to modify the appearance of a

shape include changing the lighting, transparency, or texture. Lighting makes a shape

look differently depending on the type of lighting and location of the light source.

Transparency defines whether a shape appears solid or see-through. Texture applies a

graphic image on the sides of a shape such as making a shape appear to be made out of

bricks or sand. By modifying the appearance of a shape, you can make that shape more

visually interesting.

Figure 20-9.  Drawing a custom shape using a Bezier path

Chapter 20 Understanding ARKit

540

To experiment with modifying the appearance of shapes, follow these steps:

	 1.	 Create a new Augmented Reality App project and name it

ARAppearanceApp. Make sure the Content Technology uses

SceneKit. The first way we’re going to modify the appearance of an

object is to use a graphic image that appears over that shape.

	 2.	 Search the Internet for “public domain texture images” and you’ll

find plenty of images that you can freely download and use. Texture

images typically display a regular pattern such as bricks, water,

fields, or materials such as wood or stone as shown in Figure 20-10.

Figure 20-10.  Searching for public domain texture images

Chapter 20 Understanding ARKit

541

	 3.	 Download a texture image and make sure it’s stored in either the

.png or .jpg file format. Then drag and drop it into the Navigator

pane, and when a dialog appears, click the Finish button. Your

chosen texture image appears in the middle Xcode pane as shown

in Figure 20-11.

	 4.	 Click the ViewController.swift file in the Navigator pane.

	 5.	 Modify the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

Figure 20-11.  Placing a texture image file in the Navigator pane

Chapter 20 Understanding ARKit

542

 �sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

 �let box = SCNBox(width: 0.1, height: 0.1, length: 0.2,

chamferRadius: 0.01)

 let node = SCNNode()

 let material = SCNMaterial()

 material.diffuse.contents = UIImage(named: "rocks.jpg")

 box.materials = [material]

 node.geometry = box

 node.position = SCNVector3(0, 0, -0.3)

 sceneView.scene.rootNode.addChildNode(node)

}

This code defines a SCNBox geometric shape and also defines

a SCNMaterial array. That’s because a shape can have multiple

materials. Then the code defines a graphic file called “rocks.jpg” as

its first material. Make sure you change this name to the name of

the texture image you dropped into the Navigator pane in step 3.

The entire ViewController.swift file should look like this:

import UIKit

import SceneKit

import ARKit

class ViewController: UIViewController, ARSCNViewDelegate {

 @IBOutlet var sceneView: ARSCNView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

Chapter 20 Understanding ARKit

543

 �sceneView.debugOptions = [ARSCNDebugOptions.

showWorldOrigin, ARSCNDebugOptions.showFeaturePoints]

 �let box = SCNBox(width: 0.1, height: 0.1, length: 0.2,

chamferRadius: 0.01)

 let node = SCNNode()

 let material = SCNMaterial()

 material.diffuse.contents = UIImage(named: "rocks.jpg")

 box.materials = [material]

 node.geometry = box

 node.position = SCNVector3(0, 0, -0.3)

 sceneView.scene.rootNode.addChildNode(node)

 }

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Create a session configuration

 let configuration = ARWorldTrackingConfiguration()

 // Run the view's session

 sceneView.session.run(configuration)

 }

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 // Pause the view's session

 sceneView.session.pause()

 }

 �func session(_ session: ARSession, didFailWithError error:

Error) {

 // Present an error message to the user

 }

Chapter 20 Understanding ARKit

544

 func sessionWasInterrupted(_ session: ARSession) {

 �// Inform the user that the session has been interrupted,

for example, by presenting an overlay

 }

 func sessionInterruptionEnded(_ session: ARSession) {

 �// Reset tracking and/or remove existing anchors if

consistent tracking is required

 }

}

	 6.	 Make sure an iOS device is connected to your Macintosh through

a USB cable and make sure the Scheme popup menu at the upper

left corner of the Xcode window displays your connected iOS

device.

	 7.	 Click the Run button or choose Product ➤ Run. A box appears

with the texture image displayed on its surface as shown in

Figure 20-12.

Chapter 20 Understanding ARKit

545

	 8.	 Click the Stop button in Xcode or choose Product ➤ Stop.

Another way to modify the appearance of a shape is to change its

transparency using a value between 0 (invisible) and 1 (solid).

	 9.	 Click the ViewController.swift file in the Navigator pane.

	 10.	 Add this transparency line right above the box.materials =

[material] line like this:

 material.transparency = 0.7

 box.materials = [material]

Figure 20-12.  A stone image appears as material around a box shape

Chapter 20 Understanding ARKit

546

The preceding code defines a transparency of 0.7 so the box

appears semitransparent. The entire ViewController.swift file

should look like this:

import UIKit

import SceneKit

import ARKit

class ViewController: UIViewController, ARSCNViewDelegate {

 @IBOutlet var sceneView: ARSCNView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.

showWorldOrigin, ARSCNDebugOptions.showFeaturePoints]

 �let box = SCNBox(width: 0.1, height: 0.1, length: 0.2,

chamferRadius: 0.01)

 let node = SCNNode()

 let material = SCNMaterial()

 material.diffuse.contents = UIImage(named: "rocks.jpg")

 material.transparency = 0.7

 box.materials = [material]

 node.geometry = box

 node.position = SCNVector3(0, 0, -0.3)

 sceneView.scene.rootNode.addChildNode(node)

 }

Chapter 20 Understanding ARKit

547

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Create a session configuration

 let configuration = ARWorldTrackingConfiguration()

 // Run the view's session

 sceneView.session.run(configuration)

 }

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 // Pause the view's session

 sceneView.session.pause()

 }

 �func session(_ session: ARSession, didFailWithError error:

Error) {

 // Present an error message to the user

 }

 func sessionWasInterrupted(_ session: ARSession) {

 �// Inform the user that the session has been interrupted,

for example, by presenting an overlay

 }

 func sessionInterruptionEnded(_ session: ARSession) {

 �// Reset tracking and/or remove existing anchors if

consistent tracking is required

 }

}

	 11.	 Make sure an iOS device is connected to your Macintosh through a

USB cable and make sure the Scheme popup menu at the upper left

corner of the Xcode window displays your connected iOS device.

	 12.	 Click the Run button or choose Product ➤ Run. Notice that the

box now appears somewhat transparent as shown in Figure 20-13.

Chapter 20 Understanding ARKit

548

	 13.	 Click the Stop button in Xcode or choose Product ➤ Stop.

�Playing with Lighting
Besides applying textures and defining a transparency level, another way to change the

appearance of a shape is through lighting. Lighting lets you create a light source that

illuminates nearby shapes. Depending on the lighting you choose and the position of

that light, you can create different types of visual effects on a shape.

To create a light source, you need to do the following:

•	 Define an SCNLight object.

•	 Define the SCNLight type.

•	 Assign the SCNLight object to an SCNNode.

Figure 20-13.  Changing the transparency value makes a shape look less solid

Chapter 20 Understanding ARKit

549

•	 Define the position of the SCNNode.

•	 Add the SCNNode to the scene.

To define an SCNLight object, you just need to create a constant like this:

 let spotLight = SCNLight()

Now define one of the following lighting types:

•	 ambient

•	 directional

•	 IES

•	 probe

•	 spot

Each lighting type highlights a shape in different ways, so let’s start by experimenting

with the directional lighting type:

 spotLight.type = .directional

Now that you’ve defined a lighting type, you need to create a SCNNode like this:

 let spotNode = SCNNode()

 spotNode.light = spotLight

The first line creates an SCNNode object and the second line defines its light source

as the spotlight (SCNLight) object that we created earlier.

Finally, we can position the SCNNode object based on the world origin. That means

you need to define an x, y, and z value such as

 spotNode.position = SCNVector3(0, 0.2, 0)

The preceding code places the light source 0.2 meters above the origin so the light

shines down on the box we’re going to create.

The final step is to add this light source node to the augmented reality scene:

 sceneView.scene.rootNode.addChildNode(spotNode)

Chapter 20 Understanding ARKit

550

To experiment with lighting in augmented reality, follow these steps:

	 1.	 Make sure the ARAppearanceApp is loaded in Xcode.

	 2.	 Click the ViewController.swift file.

	 3.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

 �let box = SCNBox(width: 0.1, height: 0.1, length: 0.2,

chamferRadius: 0.01)

 let node = SCNNode()

 let material = SCNMaterial()

 //material.diffuse.contents = UIImage(named: "rocks.jpg")

 //material.transparency = 0.7

 let spotLight = SCNLight()

 spotLight.type = .directional

 let spotNode = SCNNode()

 spotNode.light = spotLight

 spotNode.position = SCNVector3(0, 0.2, 0)

 material.diffuse.contents = UIColor.orange

 box.materials = [material]

 node.geometry = box

 node.position = SCNVector3(0, 0, -0.3)

 sceneView.scene.rootNode.addChildNode(node)

 sceneView.scene.rootNode.addChildNode(spotNode)

}

Chapter 20 Understanding ARKit

551

	 4.	 Make sure an iOS device is connected to your Macintosh through

a USB cable and make sure the Scheme popup menu at the upper

left corner of the Xcode window displays your connected iOS

device.

	 5.	 Click the Run button or choose Product ➤ Run. Notice that an

orange box appears, placed 0.3 meters behind the origin. Then the

light source will appear 0.2 meters above the origin shining down

on the orange box. Because the light type is directional, it only

highlights the face of the box as shown in Figure 20-14.

Figure 20-14.  Directional lighting focuses on the front of the orange box

Chapter 20 Understanding ARKit

552

	 6.	 Click the Stop button in Xcode or choose Product ➤ Stop.

To see how a different light type changes the appearance of a

shape, change the light type from directional to omni like this:

�//spotLight.type = .directional // illuminates only the front of

the box

�spotLight.type = .omni // illuminates the front and top of

the box

Now if you run this project, the omni lighting type highlights the

front and the top of the box as shown in Figure 20-15.

Apple’s documentation defines how the different light types should behave so

experiment with changing the light type and the position of the light source. By changing the

position of a light source, you can illuminate different areas of a shape. By simply changing

the light type, you can illuminate an object in different ways as shown in Figure 20-16.

Figure 20-15.  An omni light type illuminates the front and top of the orange box

Chapter 20 Understanding ARKit

553

�Summary
In this chapter, you’ve learned the basics of creating augmented reality objects using

ARKit. You’ve learned how to place an augmented reality object on a scene and how to

alter the appearance of an object by changing its color, transparency, and texture. In

addition, you also learned how to draw your own objects and illuminate an object using

a light source.

Augmented reality gives your apps the ability to overlay virtual objects over an actual

scene. In the next chapter, you’ll learn how to interact with augmented reality objects so

you can control and manipulate them.

Figure 20-16.  How different lighting types work in highlighting a shape

Chapter 20 Understanding ARKit

555
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4_21

CHAPTER 21

Interacting
with Augmented Reality
Displaying virtual objects on a real-world scene can be interesting, but you’ll likely want

to do more than just overlay static images on a scene. Besides displaying virtual objects

on a scene, ARKit can also make virtual objects move on the screen and give users the

ability to interact with virtual objects through touch gestures such as taps or swipes.

For example, a user might want to tap on a virtual object to make it move or respond

in some way such as changing its appearance or moving on the screen. By making

augmented reality interactive, your app can be more visually interesting and responsive

to the user.

Note  You can only test and run ARKit apps on an iPhone 6s or higher, an iPad Pro,
or the latest iPad models.

For this example, we’ll create an augmented reality app that displays a geometric

shape on the screen. Then users can swipe on that shape to make it rotate. To do this,

we’ll need to learn several skills.

First, most people are familiar with manipulating geometric shapes using degrees,

but Apple’s SceneKit framework uses radians instead. We could write our own formula

to convert degrees to radians, but Apple provides a mathematical framework called

GLKit, which contains a function that can perform this calculation. As a general rule,

it’s always best to rely on Apple’s frameworks as much as possible rather than write your

own functions because Apple’s frameworks are tested so you won’t have to spend time

debugging and testing your own functions.

556

To see an example of ARKit in action, follow these steps:

	 1.	 Create a new Augmented Reality App project and name it

ARGestureApp.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Underneath the import ARKit line, add the following:

import GLKit

	 4.	 Add the following under the IBOutlet to create a node like this:

let node = SCNNode()

	 5.	 Edit the viewDidLoad method to add debug options that will

display the world origin and feature points on the screen. You

may not want to display the world origin or feature points in

a final app, but it can be helpful to make sure virtual objects

appear correctly on the screen. Add the following line into the

viewDidLoad method:

sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

�Storing and Accessing Graphic Assets
Now we need to create a geometric shape. In this case, we want to create a pyramid so

we’ll need to define its width, height, and length. In addition, we also want to apply a

texture over our pyramid.

The Augmented Reality App project comes with two graphic files: ship.scn and

texture.png. We won’t be displaying the ship.scn file so you can delete the code that

displays this ship.scn on the screen. However, we do want to use the texture.png file.

In the previous chapter, you saw how to apply a texture graphic image by simply

defining its name like this:

 let material = SCNMaterial()

 material.diffuse.contents = UIImage(named: "rocks.jpg")

Chapter 21 Interacting with Augmented Reality

557

Defining the graphic file name is fine, but if you misspell the name or move the

file, then Xcode won’t know where to find that file. A safer approach is to store the

graphic image in the Assets.xcassets folder and give it a descriptive name. Then you can

reference this graphic image any time by using its descriptive name instead.

To see how to use the assets folder, follow these steps:

	 1.	 Make sure the ARGestureApp project is loaded into Xcode.

	 2.	 Click the Assets.xcassets folder in the Navigator pane to open a

pane. Near the bottom left corner of this pane, click the + icon to

display a popup menu as shown in Figure 21-1.

	 3.	 Click New Image Set. Xcode displays an Image name along with

different magnification size images you can store as shown in

Figure 21-2.

Figure 21-1.  Creating a New Image Set

Chapter 21 Interacting with Augmented Reality

558

	 4.	 Click Image under the AppIcon set and press Return. Xcode

highlights the Image name so you can type a more descriptive

name. For our purposes, type “Texture” and press Enter.

	 5.	 Click the gray disclosure triangle that appears to the left of the art.

scnassets folder. Xcode displays the ship.scn and texture.png files.

	 6.	 Drag and drop the texture.png from the Navigator pane onto the

1x dotted line box as shown in Figure 21-3.

At this point, we’ve stored a graphic image and we can now refer

to this image by using its descriptive image set name, which is

Texture.

	 7.	 Click the ViewController.swift file in the Navigator pane.

	 8.	 Modify the viewDidLoad method by deleting this line:

let scene = SCNScene(named: "art.scnassets/ship.scn")!

Figure 21-2.  Viewing an Image Set

Figure 21-3.  Displaying a graphic image in an image set

Chapter 21 Interacting with Augmented Reality

559

	 9.	 Type the following in the viewDidLoad method where you deleted

the previous line:

�node.geometry = SCNPyramid(width: 0.15, height: 0.2, length: 0.1)

�node.geometry?.firstMaterial?.diffuse.contents =

UIImage(imageLiteralResourceName: "Texture")

Notice that we can now refer to the texture by its image set name

regardless of the actual file name such as texture.png. This

reduces the chance of misspelling a file name.

	 10.	 Modify the viewDidLoad method by deleting this line:

sceneView.scene = scene

	 11.	 Type the following in the viewDidLoad method where you deleted

the previous line:

node.position = SCNVector3(0, -0.2, 0)

sceneView.scene.rootNode.addChildNode(node)

�Working with Touch Gestures
Once we’ve created a pyramid and applied a texture to it so it appears on the screen,

the next step is to recognize when the user touches the pyramid. To do this, we need to

create a gesture recognizer. There are several types of gestures you can recognize such as

a swipe, tap, long press, pinch, or rotation motion. In our project, we’re going to detect a

right swipe gesture. When the user right swipes on the pyramid, we want the pyramid to

rotate.

To detect a touch gesture, we need to create a constant that recognizes a specific type

of gesture and defines a function to respond to that touch gesture.

	 1.	 Make sure the ARGestureApp project is loaded in Xcode.

	 2.	 Click the ViewController.swift file in the Navigator pane.

Chapter 21 Interacting with Augmented Reality

560

	 3.	 Add the following two lines inside the viewDidLoad method right

under the two lines that define the pyramid and its texture as the

“Texture” image set:

�let swipeGesture = UISwipeGestureRecognizer(target: self, action:

#selector(handleSwipe))

sceneView.addGestureRecognizer(swipeGesture)

The first line creates a gesture recognizer constant that calls a

handleSwipe function to deal with the swipe gesture.

The second line adds the gesture recognizer so the scene view can

recognize the swipe gesture.

When we created a gesture recognizer, we also defined a function

to handle the swipe when it’s recognized. Now we need to create

the handleSwipe function.

	 4.	 Add the following in the ViewController.swift file:

@objc func handleSwipe(sender: UISwipeGestureRecognizer) {

 let swipeArea = sender.view as! SCNView

 let touchCoordinates = sender.location(in: swipeArea)

 �let touchedShape = swipeArea.hitTest(touchCoordinates,

options: nil)

 �if (sender.direction == .right) && (touchedShape.isEmpty !=

true) {

 print ("Right swipe")

 let degrees: Float = 45

 let radians = GLKMathDegreesToRadians(degrees)

 �let action = SCNAction.rotateBy(x: 0, y: CGFloat(radians),

z: 0, duration: 5)

 node.runAction(action)

 }

}

Chapter 21 Interacting with Augmented Reality

561

This function retrieves the coordinates where the user swiped.

Then it checks if the swipe gesture is to the right and within the

pyramid boundaries. If so, then it prints “Right swipe” and defines

degrees as a Float type with a value of 45.

Using the GLKMathDegreesToRadians function in the GLKit

framework, it converts 45 degrees to radians and stores this value

in the radians constant.

Then it defines an SCNAction to rotate by a fixed number of

radians. In this case, rotation only occurs around the y axis so

the pyramid appears to spin around. The time duration to spin

completely around is defined as 5 seconds.

This rotation action is then applied to the node (pyramid) using

the runAction method.

	 5.	 Make sure an iOS device is connected to your Macintosh through

a USB cable and make sure the Scheme popup menu at the upper

left corner of the Xcode window displays your connected iOS

device.

	 6.	 Click the Run button or choose Product ➤ Run. A pyramid

appears under the world origin, covered with the texture.png

graphic image as shown in Figure 21-4.

Chapter 21 Interacting with Augmented Reality

562

	 7.	 Right swipe on the pyramid and it will rotate for 5 seconds before

stopping.

	 8.	 Click the Stop button in Xcode or choose Product ➤ Stop.

Right now, the pyramid rotates for 5 seconds and then stops.

If you want the pyramid to rotate and never stop, modify the

handleSwipe function like this:

 @objc func handleSwipe(sender: UISwipeGestureRecognizer) {

 let swipeArea = sender.view as! SCNView

 let touchCoordinates = sender.location(in: swipeArea)

 let touchedShape = swipeArea.hitTest(touchCoordinates, options: nil)

 if (sender.direction == .right) && (touchedShape.isEmpty != true) {

 print ("Right swipe")

Figure 21-4.  Running the ARGestureApp project in an iPhone

Chapter 21 Interacting with Augmented Reality

563

 let degrees: Float = 45

 let radians = GLKMathDegreesToRadians(degrees)

 �let action = SCNAction.rotateBy(x: 0, y: CGFloat(radians),

z: 0, duration: 5)

 let forever = SCNAction.repeatForever(action)

 node.runAction(forever)

 }

 }

The complete ViewController.swift file should look like this:

import UIKit

import SceneKit

import ARKit

import GLKit

class ViewController: UIViewController, ARSCNViewDelegate {

 @IBOutlet var sceneView: ARSCNView!

 let node = SCNNode()

 override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.showWorldOrigin,

ARSCNDebugOptions.showFeaturePoints]

 // Create a new scene

 �node.geometry = SCNPyramid(width: 0.15, height: 0.2, length: 0.1)

 �node.geometry?.firstMaterial?.diffuse.contents =

UIImage(imageLiteralResourceName: "Texture")

Chapter 21 Interacting with Augmented Reality

564

 �let swipeGesture = UISwipeGestureRecognizer(target: self, action:

#selector(handleSwipe))

 sceneView.addGestureRecognizer(swipeGesture)

 // Set the scene to the view

 node.position = SCNVector3(0, -0.2, 0)

 sceneView.scene.rootNode.addChildNode(node)

 }

 @objc func handleSwipe(sender: UISwipeGestureRecognizer) {

 let swipeArea = sender.view as! SCNView

 let touchCoordinates = sender.location(in: swipeArea)

 �let touchedShape = swipeArea.hitTest(touchCoordinates, options: nil)

 �if (sender.direction == .right) && (touchedShape.isEmpty != true) {

 print ("Right swipe")

 let degrees: Float = 45

 let radians = GLKMathDegreesToRadians(degrees)

 �let action = SCNAction.rotateBy(x: 0, y: CGFloat(radians), z:

0, duration: 5)

 //let forever = SCNAction.repeatForever(action)

 node.runAction(action) //node.runAction(forever)

 }

 }

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Create a session configuration

 let configuration = ARWorldTrackingConfiguration()

 // Run the view's session

 sceneView.session.run(configuration)

 }

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

Chapter 21 Interacting with Augmented Reality

565

 // Pause the view's session

 sceneView.session.pause()

 }

 �func session(_ session: ARSession, didFailWithError error: Error) {

 // Present an error message to the user

 }

 func sessionWasInterrupted(_ session: ARSession) {

 �// Inform the user that the session has been interrupted, for

example, by presenting an overlay

 }

 func sessionInterruptionEnded(_ session: ARSession) {

 �// Reset tracking and/or remove existing anchors if consistent

tracking is required

 }

}

�Detecting a Horizontal Plane
Up until now, our augmented reality apps can appear at specific locations on the screen

and can even respond to gestures such as a swipe. To make augmented reality more

versatile, we’re going to learn about plane detection.

Plane detection allows an iOS device to recognize a horizontal plane such as a table

top or a floor. Once your app recognizes a horizontal surface, then it can place a virtual

object on that surface such as a chair or a coffee mug. In this app, you’ll learn how

to detect horizontal planes and how to use tap gestures to place a virtual object on a

horizontal plane.

	 1.	 Create a new Augmented Reality App project and name it

ARPlaneApp. This will automatically create an art.scnassets folder

with the ship.scn and texture.png art files. We’ll be using the ship.

scn file to place on a flat surface.

	 2.	 Click the ViewController.swift file in the Navigator pane.

Chapter 21 Interacting with Augmented Reality

566

	 3.	 Edit the viewWillAppear method as follows:

override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Create a session configuration

 let configuration = ARWorldTrackingConfiguration()

 configuration.planeDetection = .horizontal

 // Run the view's session

 sceneView.session.run(configuration)

}

	 4.	 Edit the viewDidLoad method as follows:

override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.showFeaturePoints,

ARSCNDebugOptions.showWorldOrigin]

 �let tapGesture = UITapGestureRecognizer(target: self, action:

#selector(handleTap))

 sceneView.addGestureRecognizer(tapGesture)

}

When our app detects a horizontal plane, we want to tap on that

area to add a virtual object. In this case, the virtual object will be

the ship.scn image. To add a tap gesture, we need to create a tap

gesture and then add it to the scene.

The first line defines a tap gesture that will be handled by a

function called handleTap. The second line adds that tap gesture

to the scene view. Now we need to create the handleTap function

to respond to the tap gesture.

Chapter 21 Interacting with Augmented Reality

567

	 5.	 Add the following handleTap function inside the ViewController.

swift file:

@objc func handleTap(sender: UITapGestureRecognizer) {

 let sceneView = sender.view as! ARSCNView

 let location = sender.location(in: sceneView)

 �let hitTest = sceneView.hitTest(location, types:

.estimatedHorizontalPlane)

 if !hitTest.isEmpty {

 addObject(hitTestResult: hitTest.first!)

 }

}

The first line defines the handleTap function as an Objective-C

function as defined by the @obj keyword. Then it retrieves the tap

gesture.

The second line creates a sceneView constant that receives the

data as an ARSCNView.

The third line identifies the location on the screen.

The fourth line checks if the tapped location appears within a

horizontal plane.

The fifth line checks if the user tapped within a horizontal plane.

If so, then it runs an addObject function that sends it the data

where the user tapped (hitTest.first!). Now we need to create this

addObject function.

	 6.	 Add the following function:

func addObject (hitTestResult: ARHitTestResult) {

 let scene = SCNScene(named: "art.scnassets/ship.scn")!

 �let node = (scene.rootNode.childNode(withName: "ship",

recursively: false))!

 let transform = hitTestResult.worldTransform.columns.3

 �node.position = SCNVector3(transform.x, transform.y,

transform.z)

 sceneView.scene.rootNode.addChildNode(node)

}

Chapter 21 Interacting with Augmented Reality

568

This function defines the ship.scn as the object to add to a scene.

The data received by this function contains the coordinates

of where the user tapped, which is stored in a 4x4 matrix

(worldTransform). The third column in this matrix contains the x,

y, and z coordinates where the user tapped.

The entire ViewController.swift file should look like this:

import UIKit

import SceneKit

import ARKit

class ViewController: UIViewController, ARSCNViewDelegate {

 @IBOutlet var sceneView: ARSCNView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.

showFeaturePoints, ARSCNDebugOptions.showWorldOrigin]

 �let tapGesture = UITapGestureRecognizer(target: self,

action: #selector(handleTap))

 sceneView.addGestureRecognizer(tapGesture)

 }

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Create a session configuration

 let configuration = ARWorldTrackingConfiguration()

Chapter 21 Interacting with Augmented Reality

569

 configuration.planeDetection = .horizontal

 // Run the view's session

 sceneView.session.run(configuration)

 }

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 // Pause the view's session

 sceneView.session.pause()

 }

 @objc func handleTap(sender: UITapGestureRecognizer) {

 let sceneView = sender.view as! ARSCNView

 let location = sender.location(in: sceneView)

 �let hitTest = sceneView.hitTest(location, types:

.estimatedHorizontalPlane)

 if !hitTest.isEmpty {

 addObject(hitTestResult: hitTest.first!)

 }

 }

 func addObject (hitTestResult: ARHitTestResult) {

 let scene = SCNScene(named: "art.scnassets/ship.scn")!

 �let node = (scene.rootNode.childNode(withName: "ship",

recursively: false))!

 let transform = hitTestResult.worldTransform.columns.3

 �node.position = SCNVector3(transform.x, transform.y,

transform.z)

 sceneView.scene.rootNode.addChildNode(node)

 }

 �func session(_ session: ARSession, didFailWithError error:

Error) {

 // Present an error message to the user

 }

Chapter 21 Interacting with Augmented Reality

570

 func sessionWasInterrupted(_ session: ARSession) {

 �// Inform the user that the session has been interrupted,

for example, by presenting an overlay

 }

 func sessionInterruptionEnded(_ session: ARSession) {

 �// Reset tracking and/or remove existing anchors if

consistent tracking is required

 }

}

	 7.	 Make sure an iOS device is connected to your Macintosh through

a USB cable and make sure the Scheme popup menu at the upper

left corner of the Xcode window displays your connected iOS

device.

	 8.	 Click the Run button or choose Product ➤ Run.

	 9.	 Point the iOS device’s camera at a flat surface. When lots of yellow

dots appear, tap the screen to display the airplane image as shown

in Figure 21-5.

Chapter 21 Interacting with Augmented Reality

571

	 10.	 Click the Stop button in Xcode or choose Product ➤ Stop.

�Modifying an Image
If you add some virtual objects to an augmented reality app, that image may be too large,

too small, or positioned at an odd angle. Fortunately, you can always modify a virtual

object to adjust its size and position.

To see how to do this, click the Navigator pane of the ARPlaneApp project, open the

art.scnassets folder, and click the ship.scn file. Xcode displays the image so you can see

its appearance. Click the Node Inspector icon or choose View ➤ Utilities ➤ Show Node

Inspector. Then click the cartoon airplane. Now you can see the position, Euler angles,

and scale of the ship.scn as shown in Figure 21-6.

Figure 21-5.  Running the ARPlaneApp project in an iPhone

Chapter 21 Interacting with Augmented Reality

572

The Position coordinates define the image’s position based on the world origin.

The Euler coordinates define the rotation of the image around the x, y, and z axes

(also known as the pitch, yaw, and roll, respectively).

The Scale coordinates define the size of the image.

Note W hen adding virtual image files to an Xcode project, you may need to
modify that virtual image’s position, rotation, and scale in the Node Inspector to
suit your needs. Most virtual image files will not be perfectly sized and oriented for
your augmented reality apps.

�Creating Virtual Objects
In the last project, we used the ship.scn file that automatically comes with any project

created using the Augmented Reality App project. In this next project, we’re going to

learn how to create simple virtual objects using common geometric shapes.

Figure 21-6.  Editing an image with the Node Inspector

Chapter 21 Interacting with Augmented Reality

573

We’ve already seen how to create virtual objects out of common geometric shapes

like cylinders, boxes, and pyramids using Swift code. Now we’re going to see how to

create common shapes and modify them to create simple virtual objects visually. You

can create virtual objects and then modify them using Swift code later if you wish.

To see how to create virtual objects visually, follow these steps:

	 1.	 Create a new Augmented Reality App project and name it

ARShapeApp.

	 2.	 Click the ViewController.swift file in the Navigator pane.

	 3.	 Type all the code from the ViewController.swift file in the

ARPlaneApp project. (If you copy all the code from the

ARPlaneApp project into this ARShapeApp project, make sure you

reconnect the ARSCNView to the IBOutlet in the ViewController.

swift file.

	 4.	 Click the art.scnassets folder and delete the ship.scn and texture.

png files by clicking each file and pressing the Delete key

(or choosing Edit ➤ Delete).

	 5.	 Click the ARShapeApp folder and choose File ➤ New ➤ File.

A template window appears. Click the iOS category and scroll

down until you see the Resource category as shown in Figure 21-7.

Chapter 21 Interacting with Augmented Reality

574

	 6.	 Click the SceneKit Scene File icon and click the Next button.

A Save As dialog appears.

	 7.	 Click in the Save As text field, type MyShape, and click Create.

This creates an empty .scn file for us to modify.

	 8.	 Drag and drop your newly created .scn file into the art.scnassets

folder.

	 9.	 Click the Library icon and you can see a variety of different objects

and modifications you can add to your .scn file as shown in

Figure 21-8.

Figure 21-7.  Choosing a SceneKit Scene File in the template window

Chapter 21 Interacting with Augmented Reality

575

	 10.	 To create a virtual object, we need to start with an empty node,

so click the Empty Node icon in the Object Library and drag and

drop it on the scene. This displays x, y, and z axes on the scene as

shown in Figure 21-9.

Figure 21-8.  The Object Library displays different items to add to a .scn file

Chapter 21 Interacting with Augmented Reality

576

	 11.	 Click the Node Inspector icon (or choose View ➤ Utilities ➤ Show

Node Inspector). From the Node Inspector, you can define the

following:

•	 The name of the node (used for identification purposes)

•	 The position of the node

•	 The Euler coordinates of the node (its rotation around the x, y,

and z axes)

•	 The scale of the node

•	 The opacity (how visible the node is)

We’ll be creating virtual objects out of multiple shapes so let’s

create a house that will consist of a box and a pyramid on top with

a plane to represent the door.

	 12.	 With the Node Inspector visible, click in the Name text field under

the Identity category and type House. If you click the Show/Hide

the Scene Graph View icon, you can see that the node you named

appears with House appearing in the Scene Graph View and the

Name text field in the Node Inspector pane as shown in Figure 21-10.

Figure 21-9.  Placing an Empty Node on a scene displays x, y, and z axes

Figure 21-10.  Defining a name for a node

Chapter 21 Interacting with Augmented Reality

577

In the Object Library pane, you’ll need to add the following:

•	 Box

•	 Pyramid

•	 Plane

	 13.	 Click the Show/Hide the Scene Graph View icon to make sure the

Scene Graph View pane is visible as shown in Figure 21-11.

	 14.	 Drag and drop the Box from the Object Library window to the

Scene Graph View pane indented under the House title as shown

in Figure 21-12.

Figure 21-11.  The Show/Hide the Scene Graph View icon

Chapter 21 Interacting with Augmented Reality

578

	 15.	 After you add a box, you may need to scroll around to find a white

box displayed on the screen. Since white can be hard to see, let’s

change the box’s color. Click the box name in the Scene Graph

View pane and click the Material Inspector icon (or choose View

➤ Utilities ➤ Show Material Inspector).

	 16.	 Click the Diffuse popup menu to display a Colors window, and

click a color such as blue.

Figure 21-12.  Make sure a blue line appears indented under the House category
when dragging and dropping items

Chapter 21 Interacting with Augmented Reality

579

	 17.	 Now we need to position the box in a specific location so click the

Node Inspector icon (or choose View ➤ Utilities ➤ Show Node

Inspector). Make sure the x, y, and z text boxes in the Position

category are all set to 0. You should now have a box appearing in

your chosen color at positions 0, 0, 0.

	 18.	 Add a pyramid by dragging and dropping it in the Scene Graph

View pane so it appears indented under the House title. This

creates a white pyramid. Let’s move this pyramid so it has a color

and appears on top of the box.

	 19.	 Click pyramid in the Scene Graphic View pane and click the

Materials Inspector icon (or choose View ➤ Utilities ➤ Show

Material Inspector). Click the Diffuse popup menu and choose a

different color such as orange. Now we need to move the pyramid

on top of the box.

	 20.	 Click the Node Inspector icon (or choose View ➤ Utilities ➤ Show

Node Inspector). Change the x and z text boxes in the Position

category to 0 but make the y value 0.5. This should place the

pyramid on top of the box.

	 21.	 Finally, we need to add a plane to create a door to the side of the

box. Drag and drop a plane indented under the House title.

	 22.	 Click the Node Inspector icon (or choose View ➤ Utilities ➤ Show

Node Inspector). Change the x text boxes in the Position category

to 0. Change the y text box value to –0.25. Change the z text box

value to 0.52. This value of 0.52 places the plane slightly in front of

the box so it’s visible.

	 23.	 Click the Attributes Inspector icon (or choose View ➤ Utilities

➤ Show Attributes Inspector). In the Size text boxes, change the

width to 0.25 and the height to 0.5.

Chapter 21 Interacting with Augmented Reality

580

	 24.	 Finally, click House in the Scene Graph View pane and then click

the Node Inspector icon (or choose View ➤ Utilities ➤ Show Node

Inspector). Change the x, y, and z values in the Scale category to

0.2. This shrinks the entire house image so it’s much smaller. The

final result should show a house with a pyramid on top of a box

and a plane in one side as shown in Figure 21-13.

	 25.	 Copy all the functions from the previous ARPlaneApp project’s

ViewController.swift file. Since we now want to display the house

image (instead of the ship.scn image), modify the first two lines of

the addObject function as follows:

 let scene = SCNScene(named: "art.scnassets/MyShape.scn")!

 �let node = (scene.rootNode.childNode(withName: "House",

recursively: false))!

Figure 21-13.  Creating a house out of a pyramid, box, and a plane

Chapter 21 Interacting with Augmented Reality

581

Notice that the first line defines the actual MyShape.scn file. Then

the second line defines the node, which we named “House”. Your

entire ViewController.swift file should look like this:

import UIKit

import SceneKit

import ARKit

class ViewController: UIViewController, ARSCNViewDelegate {

 @IBOutlet var sceneView: ARSCNView!

 override func viewDidLoad() {

 super.viewDidLoad()

 // Set the view's delegate

 sceneView.delegate = self

 // Show statistics such as fps and timing information

 sceneView.showsStatistics = true

 �sceneView.debugOptions = [ARSCNDebugOptions.

showFeaturePoints, ARSCNDebugOptions.showWorldOrigin]

 �let tapGesture = UITapGestureRecognizer(target: self,

action: #selector(handleTap))

 sceneView.addGestureRecognizer(tapGesture)

 }

 override func viewWillAppear(_ animated: Bool) {

 super.viewWillAppear(animated)

 // Create a session configuration

 let configuration = ARWorldTrackingConfiguration()

 configuration.planeDetection = .horizontal

 // Run the view's session

 sceneView.session.run(configuration)

 }

Chapter 21 Interacting with Augmented Reality

582

 override func viewWillDisappear(_ animated: Bool) {

 super.viewWillDisappear(animated)

 // Pause the view's session

 sceneView.session.pause()

 }

 @objc func handleTap(sender: UITapGestureRecognizer) {

 let sceneView = sender.view as! ARSCNView

 let location = sender.location(in: sceneView)

 �let hitTest = sceneView.hitTest(location, types:

.estimatedHorizontalPlane)

 if !hitTest.isEmpty {

 addObject(hitTestResult: hitTest.first!)

 }

 }

 func addObject (hitTestResult: ARHitTestResult) {

 let scene = SCNScene(named: "art.scnassets/MyShape.scn")!

 �let node = (scene.rootNode.childNode(withName: "House",

recursively: false))!

 let transform = hitTestResult.worldTransform.columns.3

 �node.position = SCNVector3(transform.x, transform.y,

transform.z)

 sceneView.scene.rootNode.addChildNode(node)

 }

 �func session(_ session: ARSession, didFailWithError error:

Error) {

 // Present an error message to the user

 }

 func sessionWasInterrupted(_ session: ARSession) {

 �// Inform the user that the session has been interrupted,

for example, by presenting an overlay

 }

Chapter 21 Interacting with Augmented Reality

583

 func sessionInterruptionEnded(_ session: ARSession) {

 �// Reset tracking and/or remove existing anchors if

consistent tracking is required

 }

}

	 26.	 Make sure an iOS device is connected to your Macintosh through

a USB cable and make sure the Scheme popup menu at the upper

left corner of the Xcode window displays your connected iOS

device.

	 27.	 Click the Run button or choose Product ➤Run.

	 28.	 Point the iOS device’s camera at a flat surface. When lots of yellow

dots appear, tap the screen to display the house image as shown in

Figure 21-14.

Figure 21-14.  Displaying a house image in augmented reality

Chapter 21 Interacting with Augmented Reality

584

	 29.	 Click the Stop button in Xcode or choose Product ➤ Stop.

There are two ways to design virtual objects. One way is to define everything using

Swift code. The second way is to design virtual objects visually, which can make it easier

to create objects out of multiple geometric shapes such as a pyramid on a box to create a

house.

If you need to create realistic images, you’ll likely need a 3D image editor, but for

simple shapes, creating virtual objects can be simple and easy.

�Summary
In this chapter, you learned more about working with augmented reality objects. First,

you learned how to store images by name and access them without typing the entire file

name and extension. Next, you learned how to use a gesture to swipe on a virtual object

and make it move.

You also learned how to detect horizontal planes in the real world and how to edit

and modify virtual images by changing its position, size, rotation, and scale. More

importantly, you also learned how to create geometric shapes visually and combine

them to create new objects. By knowing how to modify, store, and create virtual objects,

you can now create anything you wish to display in augmented reality.

Chapter 21 Interacting with Augmented Reality

585
© Wallace Wang 2019
W. Wang, Pro iPhone Development with Swift 5, https://doi.org/10.1007/978-1-4842-4944-4

Index

A, B
Animation

damping and velocity, 367–369
delays and options, 364–365
move items

AnimationMoveApp project, 358
label, text field and image view, 363
steps, 358–359
ViewController.swift file, 362
viewDidLoad method, 361
viewWillAppear method, 360

resize items
horizontal constraints, 370
user interface objects, 369
ViewController.swift file, 371–372
viewDidLoad method, 371

rotate item
IBOutlets, 373
image view, 376
steps, 373
ViewController.swift file, 374
viewDidLoad method, 373

source code, 357
steps, 357
transitions vs. view controllers

code and comment, 392
Ctrl-dragging form, 380
CustomSegue.swift file, 390, 391
dismissButton IBAction

method, 382

ending point, 387
GLKMathDegreesToRadians

function, 387
identifier and class, 384
openView IBAction

method, 384, 394
perform() function, 388, 389
scaling code, 392
screen display, 386
segue menu, 380
steps, 379, 381, 393–397
Storyboard ID text field, 397
.swift file, 385
transition style popup menu, 396
transition styles, 393
UIStoryboardSegue.swift class

file, 383
ViewController.swift file, 384, 385

transparency
steps, 376
ViewController.swift file, 378
viewDidLoad method, 377

AppDelegate file, 120–131
Application life cycle

AppDelegate.swift file, 89
execution state changes

active and inactive, 98
background and inactive, 99
inactive and active, 99
inactive and background, 98

https://doi.org/10.1007/978-1-4842-4944-4

586

launch screen, 99–101
notification center

broadcasting station, 101
check box selection, 109
Ctrl-dragging form, 106
IBOutlet, 103
SecondViewController.swift

file, 108
segue menu, 107
steps, 101
storyboard, 105
tapButton IBAction method, 110
tapSegmentedControl IBAction

method, 110
UIKit file, 103
viewDidLoad method, 103

state-change notifications
active scheme menu, 97
AppDelegate.swift file, 90, 92–94
applicationDidBecomeActive()

method, 91
applicationWillResignActive()

method, 91
interruption, 97
sideways-scrolling view, 96
Xcode debugging, 94

various states, 90
ARKit framework

draw augment object, 528–531
geometric shapes, 537–539
light source, 548–553
shapes modification, 539–548
single view app template

ARSCNViewDelegate, 532
IBAction method, 535
SceneKit view, 532–533
steps, 531

ViewController.swift, 535–536
viewDidLoad method, 534
viewWillAppear and

viewWillDisappear functions, 534
working process

ARSCNViewDelegate, 521
ARTestApp project, 525
augmented reality app

template, 520
debugOptions, 527
SceneKit view, 522
ship.scn file, 523
texture.png file, 524
ViewController.swift file, 521, 526
viewDidLoad function, 526

world origin template, 531–537
Audio files

audioPlayer function, 319
bar button item, 315
file formats, 313
file path, 314
flexible spacing bar button, 316
object library window, 315
pauseAudio IBAction method, 321
steps, 314–315
stopAudio IBAction method, 321
swift code, 317
system item property, 316
Toolbar, 317
UIBarButtonItem, 318
ViewController.swift file, 321, 322
viewDidLoad method, 320
and video (see Video files)
Xcode project, 319

Augmented reality (AR) interactive, 519
horizontal planes, 565–571
image modification, 571
steps, 555–556

Application life cycle (cont.)

INDEX

587

texture graphic image, 556–559
touch gestures, 559–565
viewDidLoad method, 556
virtual objects, 572–584

C
Camera

checking of, 336
iOS device, 333
privacy modification

camera and photo library, 335
Info.plist file, 333
popup menu, 334
steps, 334

save images, 340–344
take picture and capture, 339–340
user interface, 337–339

Closures
ClosurePlayground file, 53
completion handlers, 52
curly brackets, 52
data declaration, 57–59
descriptiveName() method, 51
func keyword, 51, 52
function creation, 52
parameters, 54–56
run button, 54
steps, 53
value capturing, 56–57

Cocoa Touch class file, 12
Conditional breakpoints, 48–49
Core data

addDataButton IBAction method, 150
data model file

AppDelegate.swift file, 139
attribute definition, 143
check box, 139

creation, 137–141
customization, 141–145

definition, 136
deleteDataButton IBAction

method, 151
steps of, 137
swift code, 148–152
user interface, 145–148
viewDidLoad method, 149

Core motion
acceleration

front view, 283
meaning, 282
steps, 283
viewDidLoad method, 284

CMMotionManager object, 281
detect motion, 281
device motion data, 290–292
gyroscope

orientation and rotation, 285
portrait orientation, 287
steps, 286
ViewController.swift file, 287

magnetic fields, 289–290
types of, 281

D
Data persistence

AppDelegate file, 120–131
clearData IBAction method, 118
data (see Core data)
loadData IBAction method, 118
reading and writing files, 131–136
saveData IBAction method, 117
store and retrieve data, 113
storing preferences, 114–120
ViewController.swift file, 118

INDEX

588

Debugging code
bugs, 27
fix errors, 29
logic errors, 27–29
runtime errors, 27–29
syntax errors, 27–28
tab/enter key, 28
techniques

C2F function, 34
print command and

comments, 31, 32
print (tempC) command, 33
ViewController.swift file, 31
Xcode comments, 30

types of, 27
Xcode (see Xcode debugger)

3D Touch, 235
AppDelegate.swift file, 262
detecting availability

scheme button, 240
trackpad force, 241
viewDidLoad method, 240

dynamic home screen quick
actions, 259–265

peek availability blurs, 237
peeking, popping and previewing

option
3DPeekPopApp project, 267–271
PeekViewController.swift

file, 273–275
preview menu items, 275
second view controller, 272
steps, 266
ViewController.swift file, 268–269
viewDidLoad method, 268

pressure, 242–245
quick action items

AppDelegate.swift file, 255–258

enumeration items, 253
handleShortCutItem function, 254
launchedShortcutItem, 253
menu option, 252
shortcut menu, 259
UIApplicationShortcutItem, 253

quick action menu, 236, 239
steps, 236
touchesMoved function, 243
touch screen interface, 235
view information, 238

E
ExtensionUI folder, 504–510

F
Facial recognition

analyzing pictures
FacialRecognitionApp

project, 441–442
getImage IBAction method, 436
label and image view, 434–435
save image, 441
steps, 433
ViewController class, 434
ViewController.swift file, 437–440

identification
detect faces, 444–445
drawImage function, 452–454
draw rectangles, 445–446
facial features, 458
getImage IBAction method, 443
handleFaceLandmarksRecognition

function, 451–452
landmarkRegions code, 450
simulator menu, 449

INDEX

589

steps, 443
and text recognition, 433
ViewController.swift file, 443,

446–448, 454–457
vision framework, 450

fetchData() function, 149

G
Geometric shapes, 537–539
Grand Central Dispatch (GCD)

activity indicator view, 78
asynchronous/synchronous, 69
dispatch groups, 80–86
DispatchQueue keyword, 69
displaying feedback, 77–80
doButton IBAction method, 72–74
error message, 74
iOS and macOS, 62
meaning, 62
multithreaded programming, 61
output of, 70
playground code, 69
queue, 68
steps, 72
synchronous queues, 71
threads

altered appearance, 67
button, text view and slider, 63
doButton IBAction method, 65
IBAction method, 64
initial appearance, 67
steps, 62
ViewController.swift file, 65–66
viewDidLoad method, 64, 79

ViewController.swift file, 75–77
Xcode message, 74

H
HyperText Markup Language (HTML) files

Empty file, 352
IBOutlet file, 354
JavaScript, 356
readme.html file, 352–354
steps, 352
viewDidLoad method, 354

I, J, K
IntentHandler.swift file, 500–504

L
Lighting source, 549–553
Localization

different languages, 201
hard coding, 209
image view, 222–226

sources of, 222
user interface, 223
viewDidLoad method, 224

Info pane project, 207
Main.storyboard file, 208
numbers and dates, 228–232

English version, 232
French version, 231
ViewController.swift file, 229
viewDidLoad method, 228

Object ID, 209
project name selection, 206
steps, 205
storing text, 209–213
string file creation, 213–222

application language popup
menu, 221

INDEX

590

category, 216
file inspector pane, 215
Localizable.strings file, 220
scheme popup menu, 220
ViewController.swift file, 219
viewDidLoad method, 219
Xcode creation, 216

user interface, 202–205
Xcode pane, 206

Location
accuracy, 294
annotations, 307–310
authorization, 297
CLLocationManagerDelegate

protocol, 294
data retrieves, 296
definition, 304
distance filter, 295
Info.plist file, 297
map (see Map)
mapView function, 305
request, 296
steps, 293
ViewController.swift file, 304–306
viewDidLoad method, 294–304
zooming option, 306–307

M, N
Machine learning

advantages of, 401
core ML model, 402–403
file format, 401
generic algorithms, 400
image analyzing

finalGuess function, 428
identification, 432

predictItem function, 427
recognizeImage function, 425
useCamera function, 425
ViewController.swift

file, 426, 428–431
image recognition

findResults function, 411, 412
image recognition, 414
MobileNet and SqueezeNet

models, 403
MobileNet model, 406, 409
ModelNet, 409
steps, 403
user interface, 407
ViewController.swift file, 411–413
viewDidLoad method, 410–411
Xcode project, 403

models, 401
object identification

active scheme icon, 423
core statement, 419–420
Privacy–Camera description, 424
steps, 415
UIKit import, 418
useCamera function, 418–420
ViewController.swift file, 419–423
viewDidLoad method, 421

smarter program, 399
steps, 400

Map
Apple’s headquarters, 303
IBOutlet option, 300
iOS device, 298
MapKit framework, 298
startUpdatingLocation()

method, 301
text view and Map Kit View, 299
UIKit option, 300

Localization (cont.)

INDEX

591

ViewController class, 300
viewDidLoad method, 301

O
Organizing code

code snippets
creation, 17
custom code, 18
customization, 16
deletion, 18–19
description of, 16
library code, 17
steps, 14
window, 15

extensions, 5–10
files and folders, 11–15
grouping related code, 3
@IBDesignable and

@IBInspectable, 19–25
IBOutlet, 1
// MARK comment, 3–5
menu commands, 13
programming style, 2
several tasks, 1
writing code, 1
Xcode’s pull-down menu, 10

P, Q
Passing data

applicationDidEnterBackground
method, 159

delegate
closeButton IBAction method, 190
SecondViewController.swift file, 190
steps, 187–192
ViewController.swift file, 191

notification center
closeButton IBAction method, 197
functionName, 193
steps, 192–198
ViewController.swift file, 196

protocol backward, 179
closeButton IBAction method, 184
declaration, 180
definition, 179
SecondViewController.swift file, 184
UIKit file, 183
user interface, 181
viewDataButton IBAction method,

182–185
viewDidLoad method, 185

sendDataButton IBAction method, 160
sharing data (see Sharing data)
user interface, 157

Payment app creation
configureView function, 514
Info.plist file, 511
INSendPaymentIntent function,

511–512
IntentHandler.swift file, 512–513
IntentViewController.swift file, 514–515
MainInterface.storyboard, 517
messaging domain, 510

R
readFile IBAction method, 134

S
Shake gestures

motionEnded function, 277
simulator screen, 279–280
steps, 278

INDEX

592

ViewController.swift file, 279
viewDidLoad method, 278

Shapes appearance
public domain texture images, 540
steps, 540
stone image appears, 545
texture image file, 541
transparency value, 548
ViewController.swift file, 542–547
viewDidLoad method, 541

Sharing data
AppDelegate.swift file, 155–161
delegate, 187–192
pass data forward

closeButton IBAction
method, 168–176

identifier text, 172
SecondViewController.swift

file, 166–176
segue menu, 164
steps, 171
user interface, 165–174
ViewController.swift file, 169–178
viewDidLoad method, 167–177

view controllers, 161
forward and backward, 162
pass data forward, 163
protocol, 179–187

SiriKit framework, 491
extensions, 492
ExtensionUI folder, 504–510
Intent domains, 491
IntentHandler.swift file, 500–504
intents extension file, 492, 493
interacts, 497–500
payment app creation, 510–517

Speech2Text project, 495–496
ViewController.swift file, 492

Speech recognition, 471
spoken commands, 482–486
text conversion

AVAudioEngine class, 476
IBAction methods, 476
Info.plist file, 472
recognizeSpeech()

function, 477–478
Speech2TextApp user

interface, 473
Speech2Text project, 482
steps, 471–475
stopSpeech() function, 476
textLabel IBOutlet method, 479
ViewController.swift file, 479–481

text synthesizer, 486–490
Storing preferences, 114–120
Swift file option, 12
Symbolic breakpoints, 45–48

T
Text recognition image

capture function, 461
getVideo function, 460
identification, 468
Info.plist file, 462
steps, 458
ViewController.swift file, 463–467
viewDidLoad method, 460

Touch gestures, 559–565
Track motion and orientation

accelerometer, 277
Core motion (see Core motion)
gestures, 277–280

Shake gestures (cont.)

INDEX

593

U
UserDefaults, 114–120
User interface, 202

multiple languages, 203
popup menu, 203
pseudolanguage, 204
steps, 202

V
Video files

extension file, 323
Internet

steps, 327
URL, 331
ViewController.swift file, 331
viewDidLoad method, 331
WebKit view, 329

iOS device, 327
playVideo IBAction method, 326
steps, 324
ViewController class, 325
viewDidLoad method, 325
websites, 323

Virtual objects
addObject function, 580
dragging and dropping items, 578
empty node, 576
house image, 583
node inspector icon, 576
object library, 575
scene graph view pane, 580
SceneKit scene file, 574
show/hide icon, 577

steps, 573
ViewController.swift file, 581–583

W
WebKit web pages, 345

HTML files, 351–356
Internet, 345
textFieldShouldReturn function, 349
user interface, 346
ViewController class, 347
ViewController.swift file, 349
viewDidLoad method, 348
Yahoo web site, 351

writeFile IBAction method, 133

X, Y, Z
Xcode debugger

breakpoints, 35
C2F function, 37
Celsius-Fahrenheit conversion, 35
conditional variable, 48–49
errors/bugs, 49
line numbers check box, 43
navigator identifies, 41–42
popup menu, 44
simulator window, 37
step into command, 36–40
step over and out command, 36
steps, 37
Symbolic breakpoints, 45–48
variables, 39
viewDidLoad method, 37

bugs, 35

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Organizing Code
	Using the // MARK: Comment
	Using Extensions
	Using Files and Folders
	Use Code Snippets
	Creating Custom Code Snippets
	Deleting Custom Code Snippets

	Using @IBDesignable and @IBInspectable
	Summary

	Chapter 2: Debugging Code
	Simple Debugging Techniques
	Using the Xcode Debugger
	Using Breakpoints
	Stepping Through Code
	Managing Breakpoints
	Using Symbolic Breakpoints
	Using Conditional Breakpoints

	Summary

	Chapter 3: Understanding Closures
	Closures with Multiple Parameters
	Understanding Value Capturing
	Using Closures Like Data
	Summary

	Chapter 4: Multithreaded Programming Using Grand Central Dispatch
	Understanding Threads
	Using Grand Central Dispatch
	Displaying Feedback
	Using Dispatch Groups
	Summary

	Chapter 5: Understanding the Application Life Cycle
	Getting State-Change Notifications
	Using Execution State Changes
	Active ➤ Inactive
	Inactive ➤ Background
	Background ➤ Inactive
	Inactive ➤ Active

	Displaying the Launch Screen
	Using the Notification Center
	Summary

	Chapter 6: Understanding Data Persistence
	Storing Preferences in UserDefaults
	Storing Preferences in UserDefaults in the AppDelegate File
	Reading and Writing to Files
	Using Core Data
	Creating a Data Model File
	Customizing a Data Model File
	Designing the User Interface
	Writing Swift Code

	Summary

	Chapter 7: Passing Data Between Files
	Sharing Data with the AppDelegate.swift File
	Sharing Data Between View Controllers
	Passing Data Forward
	Passing Data Backward with a Protocol
	Passing Data Backward with a Delegate

	Passing Data with the Notification Center
	Summary

	Chapter 8: Translating with Localization
	Designing the User Interface
	Creating a Localization File
	Storing Text
	Creating a Localized String File
	Localizing Images
	Customizing the App Name
	Formatting Numbers and Dates
	Summary

	Chapter 9: Using 3D Touch
	Understanding 3D Touch
	Detecting 3D Touch Availability
	Detecting Pressure
	Creating Home Screen Quick Actions
	Responding to Quick Action Items
	Adding Dynamic Home Screen Quick Actions
	Adding Peeking, Popping, and Previewing
	Summary

	Chapter 10: Detecting Motion and Orientation
	Detecting Shake Gestures
	Understanding Core Motion
	Detecting Acceleration
	Detecting Rotation with the Gyroscope
	Detecting Magnetic Fields
	Detecting Device Motion Data

	Summary

	Chapter 11: Using Location and Maps
	Using Core Location
	Defining Accuracy
	Defining a Distance Filter
	Requesting a Location
	Retrieving Location Data
	Requesting Authorization

	Adding a Map
	Zooming in a Location
	Adding Annotations
	Summary

	Chapter 12: Playing Audio and Video
	Playing an Audio File
	Playing Video
	Playing Videos on the Internet
	Summary

	Chapter 13: Using the Camera
	Setting Privacy Settings
	Checking for a Camera
	Designing a Simple User Interface
	Taking a Picture
	Saving a Picture
	Summary

	Chapter 14: Using WebKit
	Displaying Web Pages from the Internet
	Displaying HTML Files
	Summary

	Chapter 15: Displaying Animation
	Moving Items with Animation
	Customizing Animation with Delays and Options
	Customizing Animation with Damping and Velocity
	Resizing Items with Animation
	Rotating Items with Animation
	Changing Transparency with Animation
	Animating Transitions Between View Controllers
	Simple Animation Transition Between View Controllers
	Summary

	Chapter 16: Using Machine Learning
	Understanding Machine Learning
	Finding a Core ML Model
	Image Recognition
	Identifying Objects from the Camera
	Analyzing an Image
	Summary

	Chapter 17: Using Facial and Text Recognition
	Recognizing Faces in Pictures
	Highlighting Faces in an Image
	Highlighting Parts of a Face in an Image
	Recognizing Text in an Image
	Summary

	Chapter 18: Using Speech
	Converting Speech to Text
	Recognizing Spoken Commands
	Turning Text to Speech
	Summary

	Chapter 19: Understanding SiriKit
	How SiriKit Works
	Defining How Siri Interacts with the User
	Understanding the IntentHandler.swift File
	Understanding the ExtensionUI Folder
	Creating a Payment App with Siri
	Summary

	Chapter 20: Understanding ARKit
	How ARKit Works
	Drawing Augmented Reality Objects
	Resetting the World Origin
	Drawing Custom Shapes
	Modifying the Appearance of Shapes
	Playing with Lighting
	Summary

	Chapter 21: Interacting with Augmented Reality
	Storing and Accessing Graphic Assets
	Working with Touch Gestures
	Detecting a Horizontal Plane
	Modifying an Image
	Creating Virtual Objects
	Summary

	Index

